Indiana University School of Medicine - South Bend Center, South Bend, IN 46617, USA.
Indiana University School of Medicine - South Bend Center, South Bend, IN 46617, USA.
Redox Biol. 2018 May;15:74-85. doi: 10.1016/j.redox.2017.11.009. Epub 2017 Nov 20.
Reactive sulfur species (RSS) such as HS, HS, HS, (n = 2-7) and HS are chemically similar to HO and the reactive oxygen species (ROS) HO, HO, O and act on common biological effectors. RSS were present in evolution long before ROS, and because both are metabolized by catalase it has been suggested that "antioxidant" enzymes originally evolved to regulate RSS and may continue to do so today. Here we examined RSS metabolism by Cu/Zn superoxide dismutase (SOD) using amperometric electrodes for dissolved HS, a polysulfide-specific fluorescent probe (SSP4), and mass spectrometry to identify specific polysulfides (HS-HS). HS was concentration- and oxygen-dependently oxidized by 1μM SOD to polysulfides (mainly HS, and to a lesser extent HS and HS) with an EC of approximately 380μM HS. HS concentrations > 750μM inhibited SOD oxidation (IC = 1.25mM) with complete inhibition when HS > 1.75mM. Polysulfides were not metabolized by SOD. SOD oxidation preferred dissolved HS over hydrosulfide anion (HS), whereas HS inhibited polysulfide production. In hypoxia, other possible electron donors such as nitrate, nitrite, sulfite, sulfate, thiosulfate and metabisulfite were ineffective. Manganese SOD also catalyzed HS oxidation to form polysulfides, but did not metabolize polysulfides indicating common attributes of these SODs. These experiments suggest that, unlike the well-known SOD-mediated dismutation of two O to form HO and O SOD catalyzes a reaction using HS and O to form persulfide. These can then combine in various ways to form polysulfides and sulfur oxides. It is also possible that HS (or polysulfides) interact/react with SOD cysteines to affect catalytic activity or to directly contribute to sulfide metabolism. Our studies suggest that HS metabolism by SOD may have been an ancient mechanism to detoxify sulfide or to regulate RSS and along with catalase may continue to do so in contemporary organisms.
活性硫物种(RSS),如 H2S、HS-、HS2-、(n=2-7)和 HS-,与 HO 和活性氧物种(ROS)HO、HO2、O2 具有化学相似性,作用于常见的生物效应物。RSS 比 ROS 更早出现在进化过程中,并且由于两者都可以被过氧化氢酶代谢,因此有人提出“抗氧化”酶最初是为了调节 RSS 而进化的,并且今天可能仍然如此。在这里,我们使用安培电极检测 Cu/Zn 超氧化物歧化酶(SOD)对溶解 H2S 的 RSS 代谢、一种多硫化物特异性荧光探针(SSP4)和质谱法来识别特定的多硫化物(HS-HS)。1μM SOD 浓度和氧依赖性地将 H2S 氧化为多硫化物(主要是 HS-,其次是 HS2-和 HS3-),EC 约为 380μM H2S。HS 浓度 > 750μM 抑制 SOD 氧化(IC=1.25mM),当 HS > 1.75mM 时完全抑制。多硫化物不能被 SOD 代谢。SOD 氧化优先选择溶解的 H2S 而不是氢硫阴离子(HS-),而 HS-抑制多硫化物的产生。在缺氧条件下,其他可能的电子供体,如硝酸盐、亚硝酸盐、亚硫酸盐、硫酸盐、硫代硫酸盐和连二亚硫酸盐无效。锰 SOD 也催化 H2S 氧化形成多硫化物,但不代谢多硫化物,表明这些 SOD 具有共同属性。这些实验表明,与众所周知的 SOD 介导的将两个 O 歧化为 HO 和 O2 不同,SOD 催化使用 H2S 和 O2 形成过硫化物的反应。这些过硫化物可以以各种方式结合形成多硫化物和硫氧化物。也有可能 H2S(或多硫化物)与 SOD 半胱氨酸相互作用/反应,以影响催化活性或直接有助于硫化物代谢。我们的研究表明,SOD 对 H2S 的代谢可能是一种古老的机制,用于解毒硫化物或调节 RSS,并且与过氧化氢酶一起,可能在当代生物中继续发挥作用。