Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA.
Free Radic Biol Med. 2019 May 1;135:1-14. doi: 10.1016/j.freeradbiomed.2019.02.011. Epub 2019 Feb 19.
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (HS with AzMC) and polysulfides (HS, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O) and hypoxia (5% O), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased HS production for 5 days but did not affect HS. The glutathione reductase inhibitor, auranofin, initially decreased HS and HS but after two days HS increased over controls. Inhibition of peroxiredoxins with conoidin A decreased HS and increased HS, whereas the glutathione peroxidase inhibitor, tiopronin, increased HS. Aminoadipic acid, an inhibitor of cystine uptake did not affect either HS or HS. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with HS and HS, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
已进化出详细的抗氧化途径,以最大程度地减少过量活性氧 (ROS) 的威胁,并调节 ROS 作为信号实体。ROS 在化学和功能上与活性硫物种 (RSS) 相似,并且已经表明 ROS 和 RSS 都可以被抗氧化酶,超氧化物歧化酶和过氧化氢酶代谢。在这里,我们使用荧光团来检查各种抗氧化途径抑制剂对两种重要 RSS,硫化氢 (HS 与 AzMC) 和多硫化物 (HS,其中 n=2-7,与 SSP4) 在 HEK293 细胞中的代谢的影响。细胞在常氧 (21% O) 和缺氧 (5% O) 下暴露于抑制剂长达 5 天,这些条件也已知会影响 ROS 的产生。用 L-丁硫氨酸亚砜 (BSO) 或二乙基马来酸 (DEM) 降低细胞内谷胱甘肽 (GSH) 可在 5 天内降低 HS 的产生,但不影响 HS。谷胱甘肽还原酶抑制剂,金诺芬,最初降低 HS 和 HS,但两天后 HS 超过对照增加。过氧化物酶体抑制剂 conoidin A 降低 HS 和增加 HS,而谷胱甘肽过氧化物酶抑制剂,tiopronin,增加 HS。胱氨酸摄取抑制剂氨基己二酸不影响 HS 或 HS。在缓冲液中,谷胱甘肽还原酶和硫氧还蛋白还原酶抑制剂 2-AAPA、谷胱甘肽过氧化物酶模拟物 ebselen 和 tiopronin 分别与 AzMC 和 SSP4 直接反应,与 HS 和 HS 反应,或对 AzMC 或 SSP4 荧光产生光学干扰。总的来说,这些结果表明抗氧化抑制剂通常因其增加细胞 ROS 的能力而闻名,对细胞 RSS 有各种影响。这些发现表明,抑制剂可能会影响与 ROS 产生无关的细胞硫代谢途径,并且在某些情况下,它们可能直接影响 RSS 或用于测量 RSS 的方法。它们还说明了在试图通过生物学或药理学手段操纵 ROS 时,仔细评估 RSS 代谢的重要性。