Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
Nat Commun. 2017 Dec 8;8(1):1994. doi: 10.1038/s41467-017-02239-z.
To avoid photodamage plants regulate the amount of excitation energy in the membrane at the level of the light-harvesting complexes (LHCs). It has been proposed that the energy absorbed in excess is dissipated via protein conformational changes of individual LHCs. However, the exact quenching mechanism remains unclear. Here we study the mechanism of quenching in LHCs that bind a single carotenoid species and are constitutively in a dissipative conformation. Via femtosecond spectroscopy we resolve a number of carotenoid dark states, demonstrating that the carotenoid is bound to the complex in different conformations. Some of those states act as excitation energy donors for the chlorophylls, whereas others act as quenchers. Via in silico analysis we show that structural changes of carotenoids are expected in the LHC protein domains exposed to the chloroplast lumen, where acidification triggers photoprotection in vivo. We propose that structural changes of LHCs control the conformation of the carotenoids, thus permitting access to different dark states responsible for either light harvesting or photoprotection.
为了避免光损伤,植物会在捕光复合物(LHCs)水平上调节膜中激发能量的数量。有人提出,过量吸收的能量通过单个 LHCs 的蛋白质构象变化耗散。然而,确切的猝灭机制仍不清楚。在这里,我们研究了与单个类胡萝卜素结合并具有固有耗散构象的 LHCs 中的猝灭机制。通过飞秒光谱学,我们解析了一些类胡萝卜素的暗态,证明了类胡萝卜素在不同构象下与复合物结合。其中一些状态可作为叶绿素的激发能量供体,而另一些则作为猝灭剂。通过计算机分析,我们表明,在 LHC 蛋白结构域中,暴露于叶绿体腔中的类胡萝卜素结构发生变化,在体内,酸化会触发光保护。我们提出,LHCs 的结构变化控制类胡萝卜素的构象,从而可以访问负责光捕获或光保护的不同暗态。