Suppr超能文献

不同的类胡萝卜素构象在植物的光捕获调节中具有不同的功能。

Different carotenoid conformations have distinct functions in light-harvesting regulation in plants.

机构信息

Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.

Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.

出版信息

Nat Commun. 2017 Dec 8;8(1):1994. doi: 10.1038/s41467-017-02239-z.

Abstract

To avoid photodamage plants regulate the amount of excitation energy in the membrane at the level of the light-harvesting complexes (LHCs). It has been proposed that the energy absorbed in excess is dissipated via protein conformational changes of individual LHCs. However, the exact quenching mechanism remains unclear. Here we study the mechanism of quenching in LHCs that bind a single carotenoid species and are constitutively in a dissipative conformation. Via femtosecond spectroscopy we resolve a number of carotenoid dark states, demonstrating that the carotenoid is bound to the complex in different conformations. Some of those states act as excitation energy donors for the chlorophylls, whereas others act as quenchers. Via in silico analysis we show that structural changes of carotenoids are expected in the LHC protein domains exposed to the chloroplast lumen, where acidification triggers photoprotection in vivo. We propose that structural changes of LHCs control the conformation of the carotenoids, thus permitting access to different dark states responsible for either light harvesting or photoprotection.

摘要

为了避免光损伤,植物会在捕光复合物(LHCs)水平上调节膜中激发能量的数量。有人提出,过量吸收的能量通过单个 LHCs 的蛋白质构象变化耗散。然而,确切的猝灭机制仍不清楚。在这里,我们研究了与单个类胡萝卜素结合并具有固有耗散构象的 LHCs 中的猝灭机制。通过飞秒光谱学,我们解析了一些类胡萝卜素的暗态,证明了类胡萝卜素在不同构象下与复合物结合。其中一些状态可作为叶绿素的激发能量供体,而另一些则作为猝灭剂。通过计算机分析,我们表明,在 LHC 蛋白结构域中,暴露于叶绿体腔中的类胡萝卜素结构发生变化,在体内,酸化会触发光保护。我们提出,LHCs 的结构变化控制类胡萝卜素的构象,从而可以访问负责光捕获或光保护的不同暗态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c50/5722816/b7c233d97e10/41467_2017_2239_Fig1_HTML.jpg

相似文献

1
2
Molecular factors controlling photosynthetic light harvesting by carotenoids.
Acc Chem Res. 2010 Aug 17;43(8):1125-34. doi: 10.1021/ar100030m.
3
Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens.
Biochim Biophys Acta. 2016 Dec;1857(12):1870-1878. doi: 10.1016/j.bbabio.2016.09.001. Epub 2016 Sep 7.
4
Molecular adaptation of photoprotection: triplet states in light-harvesting proteins.
Biophys J. 2011 Aug 17;101(4):934-42. doi: 10.1016/j.bpj.2011.05.057.
7
Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective.
Biochim Biophys Acta. 2009 Jun;1787(6):738-46. doi: 10.1016/j.bbabio.2009.01.021. Epub 2009 Feb 5.
9
Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.
Phys Chem Chem Phys. 2007 Jun 21;9(23):2917-31. doi: 10.1039/b703028b. Epub 2007 Apr 25.
10

引用本文的文献

5
The Orange Carotenoid Protein Triggers Cyanobacterial Photoprotection by Quenching Bilins via a Structural Switch of Its Carotenoid.
J Am Chem Soc. 2024 Aug 7;146(31):21913-21921. doi: 10.1021/jacs.4c06695. Epub 2024 Jul 26.
6
Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas.
Nat Commun. 2024 May 24;15(1):4437. doi: 10.1038/s41467-024-48789-x.
7
Predicting Solvatochromism of Chromophores in Proteins through QM/MM and Machine Learning.
J Phys Chem A. 2024 May 9;128(18):3646-3658. doi: 10.1021/acs.jpca.4c00249. Epub 2024 Apr 29.
8
The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants.
Nat Commun. 2024 Jan 29;15(1):847. doi: 10.1038/s41467-024-45090-9.
9
Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII.
Photochem Photobiol Sci. 2024 Feb;23(2):303-314. doi: 10.1007/s43630-023-00518-x. Epub 2023 Dec 27.
10
Ketocarotenoid production in tomato triggers metabolic reprogramming and cellular adaptation: The quest for homeostasis.
Plant Biotechnol J. 2024 Feb;22(2):427-444. doi: 10.1111/pbi.14196. Epub 2023 Nov 30.

本文引用的文献

1
Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species.
Curr Biol. 2017 Oct 9;27(19):3034-3041.e3. doi: 10.1016/j.cub.2017.08.044. Epub 2017 Sep 21.
2
The nature of self-regulation in photosynthetic light-harvesting antenna.
Nat Plants. 2016 Apr 18;2(5):16045. doi: 10.1038/nplants.2016.45.
4
Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii.
Biochim Biophys Acta. 2016 Sep;1857(9):1514-1523. doi: 10.1016/j.bbabio.2016.04.285. Epub 2016 May 2.
7
Molecular insights into Zeaxanthin-dependent quenching in higher plants.
Sci Rep. 2015 Sep 1;5:13679. doi: 10.1038/srep13679.
8
Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex.
J Phys Chem B. 2015 Jun 25;119(25):7791-803. doi: 10.1021/acs.jpcb.5b00809. Epub 2015 Jun 8.
9
Photosynthesis. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex.
Science. 2015 May 29;348(6238):989-95. doi: 10.1126/science.aab0214.
10
A Hidden State in Light-Harvesting Complex II Revealed By Multipulse Spectroscopy.
J Phys Chem B. 2015 Apr 23;119(16):5184-93. doi: 10.1021/acs.jpcb.5b01335. Epub 2015 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验