Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.
The Analytical Research Center for Experimental Sciences, Saga University, Saga 840-8502, Japan.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):13786-13791. doi: 10.1073/pnas.1712453115. Epub 2017 Dec 11.
A systems-level understanding of cytokine-mediated, intertissue signaling is one of the keys to developing fundamental insight into the links between aging and inflammation. Here, we employed , a routine model for analysis of cytokine signaling pathways in higher animals, to identify a receptor for the growth-blocking peptide (GBP) cytokine. Having previously established that the phospholipase C/Ca signaling pathway mediates innate immune responses to GBP, we conducted a dsRNA library screen for genes that modulate Ca mobilization in S3 cells. A hitherto orphan G protein coupled receptor, Methuselah-like receptor-10 (Mthl10), was a significant hit. Secondary screening confirmed specific binding of fluorophore-tagged GBP to both S3 cells and recombinant Mthl10-ectodomain. We discovered that the metabolic, immunological, and stress-protecting roles of GBP all interconnect through Mthl10. This we established by knockdown in three fly model systems: in hemocyte-like S2 cells, knockdown decreases GBP-mediated innate immune responses; in larvae, knockdown decreases expression of antimicrobial peptides in response to low temperature; in adult flies, knockdown increases mortality rate following infection with and reduces GBP-mediated secretion of insulin-like peptides. We further report that organismal fitness pays a price for the utilization of Mthl10 to integrate all of these various homeostatic attributes of GBP: We found that elevated expression reduces lifespan. Conversely, knockdown extended lifespan. We describe how our data offer opportunities for further molecular interrogation of yin and yang between homeostasis and longevity.
从系统层面理解细胞因子介导的组织间信号传递是深入了解衰老与炎症之间关联的关键之一。在这里,我们利用这一常规模型来分析高等动物中的细胞因子信号通路,以鉴定生长抑制肽 (GBP) 细胞因子的受体。先前我们已经证实,PLC/Ca 信号通路介导了对 GBP 的固有免疫反应,因此我们对 S3 细胞中调节 Ca 动员的基因进行了 dsRNA 文库筛选。一个先前未被鉴定的 G 蛋白偶联受体,Methuselah-like receptor-10 (Mthl10),是一个重要的靶点。二次筛选证实了荧光标记的 GBP 与 S3 细胞和重组 Mthl10-胞外结构域的特异性结合。我们发现,GBP 的代谢、免疫和应激保护作用都通过 Mthl10 相互关联。这一点我们通过在三个果蝇模型系统中的 knockdown 实验得以证实:在类似于血细胞的 S2 细胞中, knockdown 降低了 GBP 介导的固有免疫反应;在幼虫中, knockdown 降低了低温下抗菌肽的表达;在成年果蝇中, knockdown 增加了感染 和减少了 GBP 介导的胰岛素样肽分泌后的死亡率。我们进一步报告,生物体的适应性为利用 Mthl10 整合 GBP 的所有这些稳态属性付出了代价:我们发现升高 表达降低了寿命。相反, knockdown 延长了寿命。我们描述了我们的数据如何为进一步从分子水平探究稳态和长寿之间的阴阳关系提供了机会。