Suppr超能文献

睡眠慢波振荡期间记忆巩固的突触机制

Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.

作者信息

Wei Yina, Krishnan Giri P, Bazhenov Maxim

机构信息

Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, California 92521.

Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, California 92521

出版信息

J Neurosci. 2016 Apr 13;36(15):4231-47. doi: 10.1523/JNEUROSCI.3648-15.2016.

Abstract

UNLABELLED

Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2-1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep.

SIGNIFICANCE STATEMENT

Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events.

摘要

未标注

睡眠对于突触效能、记忆和学习的调节至关重要。然而,睡眠节律如何促进清醒期间获得的记忆巩固的潜在机制仍不清楚。在这里,我们研究了慢振荡的作用,即3/4期睡眠期间上状态和下状态之间0.2 - 1赫兹的节律性转换,对丘脑皮质网络模型中突触连接动力学的影响,该模型实现了依赖于尖峰时间的突触可塑性。我们发现上状态传播的时空模式决定了神经元之间突触强度的变化。此外,模拟海马涟漪的外部输入传递到皮质网络会导致突触权重的输入特异性变化,这种变化在刺激移除后仍然存在。这些突触变化促进了皮质神经元特定放电序列的重放。我们的研究提出了一种神经元机制,即海马输入(如由尖波 - 涟漪事件介导)、皮质慢振荡和突触可塑性之间的相互作用如何通过慢波睡眠期间皮质细胞尖峰序列的优先重放导致记忆巩固。

意义声明

睡眠对于记忆和学习至关重要。睡眠期间与近期经历相关的时间有序尖峰序列的重放被认为是记忆巩固的神经元基础。然而,重放的具体机制或尖峰序列重放如何导致记忆巩固基础的突触变化仍知之甚少。在这里,我们使用丘脑皮质系统的详细计算模型来报告,深度睡眠期间皮质慢振荡和突触可塑性之间的相互作用可以成为将海马记忆痕迹映射到持久皮质表征的基础。这项研究首次提供了慢波睡眠如何促进近期记忆事件巩固的机制解释。

相似文献

1
Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.
J Neurosci. 2016 Apr 13;36(15):4231-47. doi: 10.1523/JNEUROSCI.3648-15.2016.
2
Stimulation Augments Spike Sequence Replay and Memory Consolidation during Slow-Wave Sleep.
J Neurosci. 2020 Jan 22;40(4):811-824. doi: 10.1523/JNEUROSCI.1427-19.2019. Epub 2019 Dec 2.
3
Differential roles of sleep spindles and sleep slow oscillations in memory consolidation.
PLoS Comput Biol. 2018 Jul 9;14(7):e1006322. doi: 10.1371/journal.pcbi.1006322. eCollection 2018 Jul.
4
Slow oscillations orchestrating fast oscillations and memory consolidation.
Prog Brain Res. 2011;193:93-110. doi: 10.1016/B978-0-444-53839-0.00007-7.
5
A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
J Neurosci. 2015 Dec 9;35(49):16236-58. doi: 10.1523/JNEUROSCI.3977-14.2015.
6
The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
Front Neural Circuits. 2017 Nov 22;11:92. doi: 10.3389/fncir.2017.00092. eCollection 2017.
7
Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
J Neurosci. 2019 Jan 16;39(3):434-444. doi: 10.1523/JNEUROSCI.2107-18.2018. Epub 2018 Nov 20.
8
Slow-wave sleep and the consolidation of long-term memory.
World J Biol Psychiatry. 2010 Jun;11 Suppl 1:16-21. doi: 10.3109/15622971003637637.
9
New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
J Comput Neurosci. 2018 Feb;44(1):1-24. doi: 10.1007/s10827-017-0663-7. Epub 2017 Dec 12.

引用本文的文献

2
Simplified two-compartment neuron with calcium dynamics capturing brain-state specific apical-amplification, -isolation and -drive.
Front Comput Neurosci. 2025 May 20;19:1566196. doi: 10.3389/fncom.2025.1566196. eCollection 2025.
4
Effects of movement behaviors on preschoolers' cognition: a systematic review of randomized controlled trials.
Int J Behav Nutr Phys Act. 2025 Jan 23;22(1):12. doi: 10.1186/s12966-025-01705-y.
5
Python/NEURON code for simulating biophysically realistic thalamocortical dynamics during sleep.
Softw Impacts. 2024 Sep;21. doi: 10.1016/j.simpa.2024.100667. Epub 2024 Jun 3.
6
Brain-consistent architecture for imagination.
Front Syst Neurosci. 2024 Aug 20;18:1302429. doi: 10.3389/fnsys.2024.1302429. eCollection 2024.
7
Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study.
PLoS One. 2024 Jun 26;19(6):e0306218. doi: 10.1371/journal.pone.0306218. eCollection 2024.
9
The role of age-related sleep EEG changes in memory decline: experiments and computational modeling.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340681.
10
Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep.
PNAS Nexus. 2022 Dec 10;2(1):pgac286. doi: 10.1093/pnasnexus/pgac286. eCollection 2023 Jan.

本文引用的文献

1
Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep.
Nat Neurosci. 2015 Nov;18(11):1679-1686. doi: 10.1038/nn.4119. Epub 2015 Sep 21.
2
The impact of cortical deafferentation on the neocortical slow oscillation.
J Neurosci. 2014 Apr 16;34(16):5689-703. doi: 10.1523/JNEUROSCI.1156-13.2014.
3
Slow-wave sleep-imposed replay modulates both strength and precision of memory.
J Neurosci. 2014 Apr 9;34(15):5134-42. doi: 10.1523/JNEUROSCI.5274-13.2014.
4
Heterosynaptic plasticity prevents runaway synaptic dynamics.
J Neurosci. 2013 Oct 2;33(40):15915-29. doi: 10.1523/JNEUROSCI.5088-12.2013.
5
Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation.
J Physiol. 2012 Aug 15;590(16):3987-4010. doi: 10.1113/jphysiol.2012.227462. Epub 2012 May 28.
6
Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization.
J Neurosci. 2012 Apr 11;32(15):5250-63. doi: 10.1523/JNEUROSCI.6141-11.2012.
8
Non-homogeneous extracellular resistivity affects the current-source density profiles of up-down state oscillations.
Philos Trans A Math Phys Eng Sci. 2011 Oct 13;369(1952):3802-19. doi: 10.1098/rsta.2011.0119.
9
Hippocampal-cortical interactions and the dynamics of memory trace reactivation.
Prog Brain Res. 2011;193:163-77. doi: 10.1016/B978-0-444-53839-0.00011-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验