Suppr超能文献

低成本非穿戴式跌倒检测系统,在单板计算机上实现,适用于需要护理的人群。

Low-Cost Non-Wearable Fall Detection System Implemented on a Single Board Computer for People in Need of Care.

机构信息

Grupo de Investigación Embsys, Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador.

Grupo de Investigación Embsys, Carrera de Ingeniería en Electrónica y Automatización, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador.

出版信息

Sensors (Basel). 2024 Aug 29;24(17):5592. doi: 10.3390/s24175592.

Abstract

This work aims at proposing an affordable, non-wearable system to detect falls of people in need of care. The proposal uses artificial vision based on deep learning techniques implemented on a Raspberry Pi4 4GB RAM with a High-Definition IR-CUT camera. The CNN architecture classifies detected people into five classes: fallen, crouching, sitting, standing, and lying down. When a fall is detected, the system sends an alert notification to mobile devices through the Telegram instant messaging platform. The system was evaluated considering real daily indoor activities under different conditions: outfit, lightning, and distance from camera. Results show a good trade-off between performance and cost of the system. Obtained performance metrics are: precision of 96.4%, specificity of 96.6%, accuracy of 94.8%, and sensitivity of 93.1%. Regarding privacy concerns, even though this system uses a camera, the video is not recorded or monitored by anyone, and pictures are only sent in case of fall detection. This work can contribute to reducing the fatal consequences of falls in people in need of care by providing them with prompt attention. Such a low-cost solution would be desirable, particularly in developing countries with limited or no medical alert systems and few resources.

摘要

本工作旨在提出一种经济实惠、非穿戴式的系统,以检测需要护理的人的跌倒情况。该提案使用基于深度学习技术的人工视觉,在配备高清 IR-CUT 摄像头的 Raspberry Pi4 4GB RAM 上实现。CNN 架构将检测到的人分为五类:跌倒、蹲伏、坐下、站立和躺下。当检测到跌倒时,系统通过 Telegram 即时通讯平台向移动设备发送警报通知。该系统在不同条件下(穿着、光线和与相机的距离)考虑了真实的日常室内活动进行了评估。结果显示了系统在性能和成本之间的良好权衡。获得的性能指标为:精度为 96.4%,特异性为 96.6%,准确性为 94.8%,灵敏度为 93.1%。关于隐私问题,尽管该系统使用摄像头,但不会记录或监控任何人的视频,只有在检测到跌倒时才会发送图片。这项工作可以通过及时关注来减少需要护理的人跌倒的致命后果。对于医疗警报系统有限或没有、资源有限的发展中国家来说,这样的低成本解决方案是可取的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9246/11397814/d0ec925c9544/sensors-24-05592-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验