School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA.
Sci Rep. 2017 Dec 12;7(1):17479. doi: 10.1038/s41598-017-14981-x.
Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model. The efficacy of this methodology is demonstrated for a range of biological case studies, including measurements of mixed anionic, cationic liposomes, extracellular vesicles in plasma, and in situ time study of DNA immobilisation on the surface of magnetic nanoparticles. The high-resolution single particle size and zeta potential characterisation will provide a better understanding of nano-bio interactions, positively impacting nanomedicine development and their regulatory approval.
纳米粒子的物理化学性质,如大小、形状、表面电荷、密度和孔隙率,在生物相互作用中起着核心作用,因此准确确定这些特性至关重要。在这里,我们提出了可调谐电阻脉冲感应,用于在逐个粒子的基础上同时进行大小和表面电荷测量,从而能够分析广泛的纳米粒子及其混合物。通过将对流纳入理论模型,显著改进了使用电阻脉冲感应测量纳米粒子zeta 电位的现有方法。该方法的有效性在一系列生物学案例研究中得到了证明,包括对混合阴离子、阳离子脂质体、血浆中的细胞外囊泡以及 DNA 在磁性纳米粒子表面固定的原位时间研究的测量。高分辨率的单颗粒大小和 zeta 电位特性将提供对纳米生物相互作用的更好理解,积极影响纳米医学的发展及其监管批准。