Suppr超能文献

使用可调电阻脉冲感应技术对生物纳米颗粒进行高分辨率单颗粒zeta 电位特性分析。

High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing.

机构信息

School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.

Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA.

出版信息

Sci Rep. 2017 Dec 12;7(1):17479. doi: 10.1038/s41598-017-14981-x.

Abstract

Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model. The efficacy of this methodology is demonstrated for a range of biological case studies, including measurements of mixed anionic, cationic liposomes, extracellular vesicles in plasma, and in situ time study of DNA immobilisation on the surface of magnetic nanoparticles. The high-resolution single particle size and zeta potential characterisation will provide a better understanding of nano-bio interactions, positively impacting nanomedicine development and their regulatory approval.

摘要

纳米粒子的物理化学性质,如大小、形状、表面电荷、密度和孔隙率,在生物相互作用中起着核心作用,因此准确确定这些特性至关重要。在这里,我们提出了可调谐电阻脉冲感应,用于在逐个粒子的基础上同时进行大小和表面电荷测量,从而能够分析广泛的纳米粒子及其混合物。通过将对流纳入理论模型,显著改进了使用电阻脉冲感应测量纳米粒子zeta 电位的现有方法。该方法的有效性在一系列生物学案例研究中得到了证明,包括对混合阴离子、阳离子脂质体、血浆中的细胞外囊泡以及 DNA 在磁性纳米粒子表面固定的原位时间研究的测量。高分辨率的单颗粒大小和 zeta 电位特性将提供对纳米生物相互作用的更好理解,积极影响纳米医学的发展及其监管批准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/149c/5727177/153935fbdc32/41598_2017_14981_Fig1_HTML.jpg

相似文献

4
Biophysical analysis of lipidic nanoparticles.
Methods. 2020 Aug 1;180:45-55. doi: 10.1016/j.ymeth.2020.05.001. Epub 2020 May 5.
5
Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
J Colloid Interface Sci. 2014 Sep 1;429:45-52. doi: 10.1016/j.jcis.2014.05.013. Epub 2014 May 20.
7
Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
Langmuir. 2016 Feb 2;32(4):1082-90. doi: 10.1021/acs.langmuir.5b03024. Epub 2016 Jan 25.
10
Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
Langmuir. 2016 Mar 8;32(9):2216-24. doi: 10.1021/acs.langmuir.5b04160. Epub 2016 Feb 22.

引用本文的文献

1
Unveiling the intricacies of exosome biology: from biogenesis to therapeutic applications.
Histochem Cell Biol. 2025 Sep 17;163(1):92. doi: 10.1007/s00418-025-02418-w.
2
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip.
Biosensors (Basel). 2025 Aug 1;15(8):496. doi: 10.3390/bios15080496.
4
Mechanical Properties of Medical Microbubbles and Echogenic Liposomes-A Review.
Micromachines (Basel). 2025 May 17;16(5):588. doi: 10.3390/mi16050588.
6
Advanced Manufacturing Methods for High-Dose Inhalable Powders.
Pharmaceutics. 2025 Mar 12;17(3):359. doi: 10.3390/pharmaceutics17030359.
7
The Role of Exosomes in Cancer Progression and Therapy.
Biology (Basel). 2025 Jan 1;14(1):27. doi: 10.3390/biology14010027.
8
Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.
Cell Biol Toxicol. 2025 Jan 14;41(1):30. doi: 10.1007/s10565-024-09961-7.
9
Development of amphiphilic self-assembled nucleolipid as BBB targeting probe based on SPECT.
Discov Nano. 2024 Dec 18;19(1):210. doi: 10.1186/s11671-024-04129-y.
10
Current state of nanomedicine drug products: An industry perspective.
J Pharm Sci. 2024 Dec;113(12):3395-3405. doi: 10.1016/j.xphs.2024.09.005. Epub 2024 Sep 12.

本文引用的文献

1
The evolving landscape of drug products containing nanomaterials in the United States.
Nat Nanotechnol. 2017 Jul;12(6):523-529. doi: 10.1038/nnano.2017.67. Epub 2017 Apr 24.
3
A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing.
J Extracell Vesicles. 2016 Sep 27;5:31242. doi: 10.3402/jev.v5.31242. eCollection 2016.
4
Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
Langmuir. 2016 Mar 8;32(9):2216-24. doi: 10.1021/acs.langmuir.5b04160. Epub 2016 Feb 22.
5
Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing.
Langmuir. 2016 Feb 2;32(4):1082-90. doi: 10.1021/acs.langmuir.5b03024. Epub 2016 Jan 25.
6
HspA1A, a 70-kDa heat shock protein, differentially interacts with anionic lipids.
Biochem Biophys Res Commun. 2015 Nov 27;467(4):835-40. doi: 10.1016/j.bbrc.2015.10.057. Epub 2015 Oct 20.
7
Biochemical characterization of the interaction between HspA1A and phospholipids.
Cell Stress Chaperones. 2016 Jan;21(1):41-53. doi: 10.1007/s12192-015-0636-6. Epub 2015 Sep 5.
8
Exosomes and other extracellular vesicles in host-pathogen interactions.
EMBO Rep. 2015 Jan;16(1):24-43. doi: 10.15252/embr.201439363. Epub 2014 Dec 8.
9
High resolution particle characterization to expedite development and regulatory acceptance of nanomedicines.
Curr Drug Deliv. 2015;12(1):115-20. doi: 10.2174/1567201811666140922110647.
10
Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
J Colloid Interface Sci. 2014 Sep 1;429:45-52. doi: 10.1016/j.jcis.2014.05.013. Epub 2014 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验