Suppr超能文献

金属氧化物双层忆阻器的多位存储操作。

Multibit memory operation of metal-oxide bi-layer memristors.

作者信息

Stathopoulos Spyros, Khiat Ali, Trapatseli Maria, Cortese Simone, Serb Alexantrou, Valov Ilia, Prodromakis Themis

机构信息

Department of Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, SO17 1BJ, Southampton, United Kingdom.

Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.

出版信息

Sci Rep. 2017 Dec 13;7(1):17532. doi: 10.1038/s41598-017-17785-1.

Abstract

Emerging nanoionic memristive devices are considered as the memory technology of the future and have been winning a great deal of attention due to their ability to perform fast and at the expense of low-power and -space requirements. Their full potential is envisioned that can be fulfilled through their capacity to store multiple memory states per cell, which however has been constrained so far by issues affecting the long-term stability of independent states. Here, we introduce and evaluate a multitude of metal-oxide bi-layers and demonstrate the benefits from increased memory stability via multibit memory operation. We propose a programming methodology that allows for operating metal-oxide memristive devices as multibit memory elements with highly packed yet clearly discernible memory states. These states were found to correlate with the transport properties of the introduced barrier layers. We are demonstrating memory cells with up to 6.5 bits of information storage as well as excellent retention and power consumption performance. This paves the way for neuromorphic and non-volatile memory applications.

摘要

新兴的纳米离子忆阻器件被视为未来的存储技术,因其能够快速运行且功耗低、空间需求小而备受关注。人们设想其全部潜力可通过每个单元存储多个存储状态的能力来实现,然而到目前为止,这受到影响独立状态长期稳定性问题的限制。在此,我们引入并评估了多种金属氧化物双层结构,并通过多位存储操作展示了提高存储稳定性的益处。我们提出了一种编程方法,可使金属氧化物忆阻器件作为具有高度紧凑且清晰可辨存储状态的多位存储元件运行。发现这些状态与引入的势垒层的传输特性相关。我们展示了具有高达6.5位信息存储能力以及出色的保持和功耗性能的存储单元。这为神经形态和非易失性存储应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af26/5727485/571e16398460/41598_2017_17785_Fig1_HTML.jpg

相似文献

1
Multibit memory operation of metal-oxide bi-layer memristors.
Sci Rep. 2017 Dec 13;7(1):17532. doi: 10.1038/s41598-017-17785-1.
3
Two-Dimensional Unipolar Memristors with Logic and Memory Functions.
Nano Lett. 2020 Jun 10;20(6):4144-4152. doi: 10.1021/acs.nanolett.0c00002. Epub 2020 May 8.
5
Stochastic memristive devices for computing and neuromorphic applications.
Nanoscale. 2013 Jul 7;5(13):5872-8. doi: 10.1039/c3nr01176c. Epub 2013 May 22.
6
Nonvolatile multibit Schottky memory based on single n-type Ga doped CdSe nanowires.
Nanotechnology. 2012 Dec 7;23(48):485203. doi: 10.1088/0957-4484/23/48/485203. Epub 2012 Nov 9.
7
Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide.
Nature. 2018 Feb 21;554(7693):500-504. doi: 10.1038/nature25747.
8
Ferroelectric symmetry-protected multibit memory cell.
Sci Rep. 2017 Feb 8;7:42196. doi: 10.1038/srep42196.
9
Multibit data storage states formed in plasma-treated MoS₂ transistors.
ACS Nano. 2014 Apr 22;8(4):4023-32. doi: 10.1021/nn501181t. Epub 2014 Apr 1.
10
Highly Flexible and Transparent Memristive Devices Using Cross-Stacked Oxide/Metal/Oxide Electrode Layers.
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5215-5222. doi: 10.1021/acsami.8b17700. Epub 2019 Jan 23.

引用本文的文献

3
Timing Selector: Using Transient Switching Dynamics to Solve the Sneak Path Issue of Crossbar Arrays.
Small Sci. 2021 Oct 10;2(1):2100072. doi: 10.1002/smsc.202100072. eCollection 2022 Jan.
4
Optically Readable Multilevel Magnetic Memory States in Perpendicularly Exchange-Biased Ferromagnetic Multilayers.
Small. 2025 Mar;21(10):e2411966. doi: 10.1002/smll.202411966. Epub 2025 Jan 26.
5
Single-trial detection of auditory cues from the rat brain using memristors.
Sci Adv. 2024 Sep 6;10(36):eadp7613. doi: 10.1126/sciadv.adp7613. Epub 2024 Sep 4.
6
Hardware implementation of memristor-based artificial neural networks.
Nat Commun. 2024 Mar 4;15(1):1974. doi: 10.1038/s41467-024-45670-9.
8
Unravelling the Data Retention Mechanisms under Thermal Stress on 2D Memristors.
ACS Omega. 2023 Jul 20;8(30):27543-27552. doi: 10.1021/acsomega.3c03200. eCollection 2023 Aug 1.
9
Thousands of conductance levels in memristors integrated on CMOS.
Nature. 2023 Mar;615(7954):823-829. doi: 10.1038/s41586-023-05759-5. Epub 2023 Mar 29.
10
Metal doped polyaniline as neuromorphic circuit elements for in-materia computing.
Sci Technol Adv Mater. 2023 Feb 27;24(1):2178815. doi: 10.1080/14686996.2023.2178815. eCollection 2023.

本文引用的文献

2
Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19287-19295. doi: 10.1021/acsami.7b02921. Epub 2017 May 30.
3
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.
Sci Rep. 2016 Nov 11;6:36652. doi: 10.1038/srep36652.
6
Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications.
Nanotechnology. 2016 Sep 9;27(36):365202. doi: 10.1088/0957-4484/27/36/365202. Epub 2016 Aug 1.
7
X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devices.
Nanotechnology. 2016 Aug 26;27(34):345705. doi: 10.1088/0957-4484/27/34/345705. Epub 2016 Jul 15.
8
Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach.
ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19605-11. doi: 10.1021/acsami.6b04919. Epub 2016 Jul 22.
9
Resistive Switching Mechanisms on TaOx and SrRuO3 Thin-Film Surfaces Probed by Scanning Tunneling Microscopy.
ACS Nano. 2016 Jan 26;10(1):1481-92. doi: 10.1021/acsnano.5b07020. Epub 2016 Jan 12.
10
Spectromicroscopic insights for rational design of redox-based memristive devices.
Nat Commun. 2015 Oct 19;6:8610. doi: 10.1038/ncomms9610.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验