Suppr超能文献

异染色质形成和功能的十个原则。

Ten principles of heterochromatin formation and function.

机构信息

Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.

Chan-Zuckerberg BioHub, San Francisco, California 94158, USA.

出版信息

Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. doi: 10.1038/nrm.2017.119. Epub 2017 Dec 13.

Abstract

Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.

摘要

异染色质是真核染色体的一个关键结构特征,赋予特定基因组区域特定的功能特性。异染色质抑制转座元件活性、隔离重复区域的 DNA 修复并确保染色体正确分离的能力对维持基因组稳定性至关重要。异染色质区域的核小体显示出组蛋白的翻译后修饰,通过限制谱系特异性基因表达来参与发育调控。异染色质的建立和维持机制是可分离的,涉及与新生转录本结合的序列特异性因子招募染色质修饰酶的能力。异染色质可以从起始位点沿着染色质扩散。异染色质促进自身扩散和遗传的倾向受到抑制因子的拮抗。由于其对染色体功能的重要性,异染色质在各种人类疾病的发病机制中起着关键作用。在这篇综述中,我们使用从酵母到人类等各种真核生物的研究中的选定例子,讨论了异染色质形成和功能的保守原则,重点介绍了从单细胞模式生物中获得的见解。

相似文献

1
Ten principles of heterochromatin formation and function.
Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. doi: 10.1038/nrm.2017.119. Epub 2017 Dec 13.
2
Studies on the mechanism of RNAi-dependent heterochromatin assembly.
Cold Spring Harb Symp Quant Biol. 2006;71:461-71. doi: 10.1101/sqb.2006.71.044.
3
RNA interference and epigenetic control of heterochromatin assembly in fission yeast.
Cold Spring Harb Symp Quant Biol. 2004;69:419-27. doi: 10.1101/sqb.2004.69.419.
4
RNAi-mediated heterochromatin assembly in fission yeast.
Cold Spring Harb Symp Quant Biol. 2006;71:487-96. doi: 10.1101/sqb.2006.71.059.
5
Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15548-55. doi: 10.1073/pnas.1522127112. Epub 2015 Dec 2.
6
Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance.
EMBO J. 2013 May 2;32(9):1250-64. doi: 10.1038/emboj.2013.72. Epub 2013 Apr 9.
7
Yeast epigenetics: the inheritance of histone modification states.
Biosci Rep. 2019 May 7;39(5). doi: 10.1042/BSR20182006. Print 2019 May 31.
8
Linking replication stress with heterochromatin formation.
Chromosoma. 2016 Jun;125(3):523-33. doi: 10.1007/s00412-015-0545-6. Epub 2015 Oct 28.
9
Molecular biology. RNAi and heterochromatin--a hushed-up affair.
Science. 2002 Sep 13;297(5588):1818-9. doi: 10.1126/science.1075874. Epub 2002 Aug 22.
10
Ccp1 modulates epigenetic stability at centromeres and affects heterochromatin distribution in .
J Biol Chem. 2018 Aug 3;293(31):12068-12080. doi: 10.1074/jbc.RA118.003873. Epub 2018 Jun 13.

引用本文的文献

3
A Biophysics of Epigenetic Rejuvenation.
Cells. 2025 Aug 13;14(16):1249. doi: 10.3390/cells14161249.
4
Faithful inheritance: Parental histone recycling and epigenetic memory in fission yeast.
Cell Insight. 2025 Aug 8;4(5):100275. doi: 10.1016/j.cellin.2025.100275. eCollection 2025 Oct.
5
9
SMCHD1 maintains heterochromatin, genome compartments and epigenome landscape in human myoblasts.
Nat Commun. 2025 Jul 26;16(1):6900. doi: 10.1038/s41467-025-62211-0.
10

本文引用的文献

2
RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin.
Elife. 2017 Aug 1;6:e25299. doi: 10.7554/eLife.25299.
4
Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
Nature. 2017 Jul 13;547(7662):236-240. doi: 10.1038/nature22822. Epub 2017 Jun 21.
5
Phase separation drives heterochromatin domain formation.
Nature. 2017 Jul 13;547(7662):241-245. doi: 10.1038/nature22989. Epub 2017 Jun 21.
6
An Evolutionary Perspective on Yeast Mating-Type Switching.
Genetics. 2017 May;206(1):9-32. doi: 10.1534/genetics.117.202036.
9
SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication.
Mol Cell. 2017 Apr 6;66(1):50-62.e6. doi: 10.1016/j.molcel.2017.02.006. Epub 2017 Mar 16.
10
Causal role for inheritance of H3K27me3 in maintaining the OFF state of a HOX gene.
Science. 2017 Apr 7;356(6333). doi: 10.1126/science.aai8236. Epub 2017 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验