Suppr超能文献

超越切割:用于下一代微藻代谢工程的CRISPR驱动合成生物学工具包

Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering.

作者信息

Yang Limin, Lu Qian

机构信息

School of Life Sciences, Jiangsu University, Zhenjiang 212100, China.

School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

出版信息

Int J Mol Sci. 2025 Aug 2;26(15):7470. doi: 10.3390/ijms26157470.

Abstract

Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology "Swiss Army Knife". We synthesize the rapid evolution of CRISPR-derived tools-including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates-and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges-species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety-are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing.

摘要

微藻具有无与伦比的能力,能够在阳光驱动下生长、固定二氧化碳并合成各种高价值化合物,是循环生物经济中可持续的细胞工厂。然而,工业应用受到生物学限制和传统遗传工具不足的阻碍。CRISPR-Cas系统的出现最初通过靶向DNA切割实现了精确的基因编辑。本文认为,真正的变革潜力在于果断超越切割,将CRISPR作为一种多功能的合成生物学“瑞士军刀”加以利用。我们综述了CRISPR衍生工具的快速发展,包括转录调节因子(CRISPRa/i)、表观基因组编辑器、碱基/碱基编辑器、多重系统以及集成生物传感器的逻辑门,以及它们在微藻工程中的革命性应用。这些工具能够实现可调基因表达、稳定的表观遗传重编程、无双链断裂的核苷酸水平精确编辑、复杂代谢网络的协同重新布线以及对环境线索的动态自主控制。我们批判性地评估了它们在增强光合作用、提高脂质/生物燃料产量、设计高价值化合物途径(类胡萝卜素、多不饱和脂肪酸、蛋白质)、提高抗逆性以及优化碳利用方面的应用。分析了持续存在的挑战——物种特异性工具优化、递送效率、遗传稳定性、可扩展性和生物安全性,以及整合人工智能、自动化和多组学的新兴解决方案和未来方向。这种CRISPR工具包的战略整合释放了设计强大、高产微藻细胞工厂的潜力,最终实现了它们作为下一代生物制造可持续平台的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf1/12347677/3ebc3378eb53/ijms-26-07470-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验