Yang Limin, Lu Qian
School of Life Sciences, Jiangsu University, Zhenjiang 212100, China.
School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Int J Mol Sci. 2025 Aug 2;26(15):7470. doi: 10.3390/ijms26157470.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology "Swiss Army Knife". We synthesize the rapid evolution of CRISPR-derived tools-including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates-and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges-species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety-are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing.
微藻具有无与伦比的能力,能够在阳光驱动下生长、固定二氧化碳并合成各种高价值化合物,是循环生物经济中可持续的细胞工厂。然而,工业应用受到生物学限制和传统遗传工具不足的阻碍。CRISPR-Cas系统的出现最初通过靶向DNA切割实现了精确的基因编辑。本文认为,真正的变革潜力在于果断超越切割,将CRISPR作为一种多功能的合成生物学“瑞士军刀”加以利用。我们综述了CRISPR衍生工具的快速发展,包括转录调节因子(CRISPRa/i)、表观基因组编辑器、碱基/碱基编辑器、多重系统以及集成生物传感器的逻辑门,以及它们在微藻工程中的革命性应用。这些工具能够实现可调基因表达、稳定的表观遗传重编程、无双链断裂的核苷酸水平精确编辑、复杂代谢网络的协同重新布线以及对环境线索的动态自主控制。我们批判性地评估了它们在增强光合作用、提高脂质/生物燃料产量、设计高价值化合物途径(类胡萝卜素、多不饱和脂肪酸、蛋白质)、提高抗逆性以及优化碳利用方面的应用。分析了持续存在的挑战——物种特异性工具优化、递送效率、遗传稳定性、可扩展性和生物安全性,以及整合人工智能、自动化和多组学的新兴解决方案和未来方向。这种CRISPR工具包的战略整合释放了设计强大、高产微藻细胞工厂的潜力,最终实现了它们作为下一代生物制造可持续平台的前景。
Proc Natl Acad Sci U S A. 2025-9-2
ACS Synth Biol. 2025-7-18
Nucleic Acids Res. 2025-7-8
J Agric Food Chem. 2025-6-18
Trends Biotechnol. 2025-8
J Integr Plant Biol. 2025-7
J Microbiol. 2025-3
Mol Ther. 2025-6-4
Crit Rev Food Sci Nutr. 2025-3-14
Adv Sci (Weinh). 2025-4