Suppr超能文献

利用基于CT参考肺形状训练的主动形状模型对功能性SPECT图像进行自动肺分割。

Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

作者信息

Cheimariotis Grigorios-Aris, Al-Mashat Mariam, Haris Kostas, Aletras Anthony H, Jögi Jonas, Bajc Marika, Maglaveras Nicolaos, Heiberg Einar

机构信息

Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden.

出版信息

Ann Nucl Med. 2018 Feb;32(2):94-104. doi: 10.1007/s12149-017-1223-y. Epub 2017 Dec 13.

Abstract

OBJECTIVE

Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes.

METHODS

A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images.

RESULTS

The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p < 0.001) in SPECT. There were similar observations when comparing reference volumes from CT and manual delineations in SPECT images, left lung (bias was - 10 ± 491, R = 0.60, p = 0.005) right lung (bias 36 ± 524 ml, R = 0.62, p = 0.004).

CONCLUSION

Automated segmentation on SPECT images are on par with manual segmentation on SPECT images. Relative large volumetric differences between manual delineations of functional SPECT images and anatomical CT images confirms that lung segmentation of functional SPECT images is a challenging task. The current algorithm is a first step towards automatic quantification of wide range of measurements.

摘要

目的

图像分割是量化肺功能降低或丧失程度的关键步骤。本研究旨在开发并验证一种用于在通气和灌注单光子发射计算机断层扫描(SPECT)图像中自动分割肺部的新工具,并将自动和手动SPECT肺部分割与参考计算机断层扫描(CT)体积进行比较。

方法

共有77名受试者(69例阻塞性肺疾病患者和8例无明显通气或灌注丧失的受试者)在混合伽马相机系统中先进行低剂量CT检查,随后进行通气/灌注(V/P)SPECT检查。在训练阶段,利用57张解剖学低剂量CT图像中的肺形状构建两个主动形状模型(右肺和左肺),然后将其用于图像分割。该算法在20例患者中进行了验证,将其结果与相应CT图像的参考轮廓进行比较,并将SPECT图像中的自动分割与手动轮廓进行比较。

结果

自动SPECT轮廓与手动SPECT轮廓之间的骰子系数,右肺为0.83±0.04%,左肺为0.82±0.05%。在SPECT中,右肺(R = 0.53,p = 0.02)和左肺(R = 0.69,p < 0.001)的CT参考体积与自动轮廓之间存在统计学显著差异。在比较SPECT图像中CT参考体积与手动轮廓时,左肺(偏差为-10±491,R = 0.60,p = 0.005)和右肺(偏差为36±524 ml,R = 0.62,p = 0.004)也有类似的观察结果。

结论

SPECT图像上的自动分割与SPECT图像上的手动分割相当。功能性SPECT图像的手动轮廓与解剖学CT图像之间存在相对较大的体积差异,这证实了功能性SPECT图像的肺分割是一项具有挑战性的任务。当前算法是朝着自动量化广泛测量迈出的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06f9/5797204/e0d8b11eae4d/12149_2017_1223_Fig1_HTML.jpg

相似文献

1
Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.
Ann Nucl Med. 2018 Feb;32(2):94-104. doi: 10.1007/s12149-017-1223-y. Epub 2017 Dec 13.
2
Automatic segmentation of lungs in SPECT images using active shape model trained by meshes delineated in CT images.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1280-1283. doi: 10.1109/EMBC.2016.7590940.
3
Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.
J Nucl Med Technol. 2017 Sep;45(3):185-192. doi: 10.2967/jnmt.117.191056. Epub 2017 Apr 13.
4
Interactive lung segmentation in abnormal human and animal chest CT scans.
Med Phys. 2014 Aug;41(8):081915. doi: 10.1118/1.4890597.
7
Automatic segmentation variability estimation with segmentation priors.
Med Image Anal. 2018 Dec;50:54-64. doi: 10.1016/j.media.2018.08.006. Epub 2018 Aug 26.
9
Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.
Phys Med Biol. 2012 Jun 21;57(12):3945-62. doi: 10.1088/0031-9155/57/12/3945. Epub 2012 May 30.

引用本文的文献

1
Semi-supervised segmentation of metastasis lesions in bone scan images.
Front Mol Biosci. 2022 Oct 28;9:956720. doi: 10.3389/fmolb.2022.956720. eCollection 2022.
4
[Research progress in lung parenchyma segmentation based on computed tomography].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):379-386. doi: 10.7507/1001-5515.202008032.
5
2D Statistical Lung Shape Analysis Using Chest Radiographs: Modelling and Segmentation.
J Digit Imaging. 2021 Jun;34(3):523-540. doi: 10.1007/s10278-021-00440-7. Epub 2021 Mar 22.
6
Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images.
PLoS One. 2020 Dec 3;15(12):e0243253. doi: 10.1371/journal.pone.0243253. eCollection 2020.

本文引用的文献

3
Home treatment of patients with small to medium sized acute pulmonary embolism.
J Thromb Thrombolysis. 2015 Feb;39(2):166-72. doi: 10.1007/s11239-014-1097-y.
4
Application of texture analysis to ventilation SPECT/CT data.
Comput Med Imaging Graph. 2011 Sep;35(6):438-50. doi: 10.1016/j.compmedimag.2011.01.001. Epub 2011 May 28.
8
Objective analysis of whole lung and lobar ventilation/perfusion relationships in pulmonary embolism.
Clin Physiol Funct Imaging. 2008 Jan;28(1):14-26. doi: 10.1111/j.1475-097X.2007.00767.x.
10
Diagnostic evaluation of planar and tomographic ventilation/perfusion lung images in patients with suspected pulmonary emboli.
Clin Physiol Funct Imaging. 2004 Sep;24(5):249-56. doi: 10.1111/j.1475-097X.2004.00546.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验