Laboratory of Pharmacology-Toxicology, Université François-Rabelais de Tours, CNRS, UMR 7292, CHRU de Tours, 2 Boulevard Tonnellé, 37044, Tours Cedex, France.
Laboratory of Pharmacology-Toxicology, CHRU de Tours, Tours, France.
Clin Pharmacokinet. 2018 Sep;57(9):1173-1184. doi: 10.1007/s40262-017-0621-6.
The pharmacokinetics of infliximab are highly variable and influence clinical response in chronic inflammatory diseases. The goal of this study was to build a Bayesian model allowing predictions of upcoming infliximab concentrations and dosing regimen adjustment, using only one concentration measurement and information regarding the last infliximab infusion.
This retrospective study was based on data from 218 patients treated with infliximab in Tours University Hospital who were randomly assigned to learning (two-thirds) or validation (one-third) data subsets. One-compartment pharmacokinetic and time since last dose (TLD) models were built and compared using learning and validation subsets. From these models, Bayesian pharmacokinetic and TLD models using one concentration measurement (1C-PK and 1C-TLD) were designed. The predictive performances of the 1C-TLD model were tested on two external validation cohorts.
Pharmacokinetic and TLD models described the data satisfactorily and provided accurate parameter estimations. Comparable predictions of infliximab concentrations were obtained from pharmacokinetic versus TLD models, as well as from Bayesian 1C-PK versus 1C-TLD models. The 1C-TLD model showed satisfactory prediction of future infliximab concentrations and provided satisfactory predictions of infliximab steady-state concentration for up to three upcoming visits after a blood sample.
Accurate individual concentration predictions can be obtained using a single infliximab concentration measurement and information regarding only the last infusion. The 1C-TLD model may help to optimize the dosing regimen of infliximab in routine therapeutic drug monitoring.
英夫利昔单抗的药代动力学高度可变,会影响慢性炎症性疾病的临床反应。本研究的目的是建立一个贝叶斯模型,仅使用一次浓度测量值和关于最后一次英夫利昔单抗输注的信息,即可预测即将到来的英夫利昔单抗浓度并调整给药方案。
这项回顾性研究基于在图尔大学医院接受英夫利昔单抗治疗的 218 名患者的数据,这些患者被随机分配到学习(三分之二)或验证(三分之一)数据子集中。使用学习和验证子集构建并比较了单室药代动力学和自上次给药时间(TLD)模型。基于这些模型,使用一次浓度测量值(1C-PK 和 1C-TLD)设计了贝叶斯药代动力学和 TLD 模型。在两个外部验证队列上测试了 1C-TLD 模型的预测性能。
药代动力学和 TLD 模型对数据的描述令人满意,并提供了准确的参数估计。从药代动力学模型和 TLD 模型,以及从贝叶斯 1C-PK 模型和 1C-TLD 模型中,都可以获得英夫利昔单抗浓度的可比预测。1C-TLD 模型能够对未来的英夫利昔单抗浓度进行准确预测,并在采血后最多三个未来访视期间对英夫利昔单抗稳态浓度进行了令人满意的预测。
仅使用一次英夫利昔单抗浓度测量值和关于最后一次输注的信息,即可获得准确的个体浓度预测。1C-TLD 模型可能有助于优化常规治疗药物监测中的英夫利昔单抗给药方案。