Low-Décarie Etienne, Boatman Tobias G, Bennett Noah, Passfield Will, Gavalás-Olea Antonio, Siegel Philipp, Geider Richard J
School of Biological Sciences University of Essex Colchester UK.
Instituto de Investigaciones Marinas (IIM-CSIC) Vigo Spain.
Ecol Evol. 2017 Nov 15;7(23):10467-10481. doi: 10.1002/ece3.3576. eCollection 2017 Dec.
The equations used to account for the temperature dependence of biological processes, including growth and metabolic rates, are the foundations of our predictions of how global biogeochemistry and biogeography change in response to global climate change. We review and test the use of 12 equations used to model the temperature dependence of biological processes across the full range of their temperature response, including supra- and suboptimal temperatures. We focus on fitting these equations to thermal response curves for phytoplankton growth but also tested the equations on a variety of traits across a wide diversity of organisms. We found that many of the surveyed equations have comparable abilities to fit data and equally high requirements for data quality (number of test temperatures and range of response captured) but lead to different estimates of cardinal temperatures and of the biological rates at these temperatures. When these rate estimates are used for biogeographic predictions, differences between the estimates of even the best-fitting models can exceed the global biological change predicted for a decade of global warming. As a result, studies of the biological response to global changes in temperature must make careful consideration of model selection and of the quality of the data used for parametrizing these models.
用于解释包括生长和代谢速率在内的生物过程温度依赖性的方程式,是我们预测全球生物地球化学和生物地理学如何响应全球气候变化的基础。我们回顾并测试了12个用于模拟生物过程在其整个温度响应范围内(包括超适宜和次适宜温度)温度依赖性的方程式。我们专注于将这些方程式拟合到浮游植物生长的热响应曲线,但也在广泛多样的生物体的各种性状上测试了这些方程式。我们发现,许多被调查的方程式在拟合数据方面具有相当的能力,对数据质量(测试温度的数量和捕获的响应范围)也有同样高的要求,但会导致对最适温度以及这些温度下生物速率的不同估计。当这些速率估计用于生物地理预测时,即使是拟合最好的模型的估计值之间的差异也可能超过预测的十年全球变暖所导致的全球生物变化。因此,关于生物对全球温度变化响应的研究必须仔细考虑模型选择以及用于这些模型参数化的数据质量。