Suppr超能文献

生物表面活性剂-蛋白质相互作用:甘露糖赤藓糖醇脂-A对β-葡萄糖苷酶的影响

Biosurfactant-Protein Interaction: Influences of Mannosylerythritol Lipids-A on β-Glucosidase.

作者信息

Fan Linlin, Xie Pujun, Wang Ying, Huang Zisu, Zhou Jianzhong

机构信息

Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.

Institute of Chemical Industry of Forest Products, CAF , Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu 210042, China.

出版信息

J Agric Food Chem. 2018 Jan 10;66(1):238-246. doi: 10.1021/acs.jafc.7b04469. Epub 2017 Dec 27.

Abstract

In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V and K of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T) and unfolding enthalpy (ΔH) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.

摘要

在本研究中,通过差示扫描量热法(DSC)、圆二色光谱法(CD)、等温滴定量热法(ITC)和对接模拟,研究了生物表面活性剂甘露糖赤藓糖醇脂-A(MEL-A)对β-葡萄糖苷酶活性的影响及其分子相互作用。酶抑制动力学数据表明,低浓度(<临界胶束浓度(CMC),20.0±5.0μM)的MEL-A可增强β-葡萄糖苷酶活性,而在高于20.0μM的较高浓度下则抑制该酶活性,随后β-葡萄糖苷酶的V和K降低。热力学和结构数据表明,在MEL-A存在下,β-葡萄糖苷酶的中点温度(T)和展开焓(ΔH)移向较高值(76.6℃,126.3J/g),并且在CMC浓度下,MEL-A导致β-葡萄糖苷酶的二级结构发生变化,包括α-螺旋、β-转角或无规卷曲含量增加,β-折叠含量降低。进一步的ITC和对接模拟表明,除了该生物表面活性剂的糖基残基中的氨基酸与羟基之间的氢键外,MEL-A与β-葡萄糖苷酶的结合是由β-葡萄糖苷酶的氨基酸残基与MEL-A的脂肪酸残基之间发生的弱疏水相互作用驱动的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验