Suppr超能文献

用于牙周比例数据的增强混合β回归模型。

Augmented mixed beta regression models for periodontal proportion data.

作者信息

Galvis Diana M, Bandyopadhyay Dipankar, Lachos Victor H

机构信息

Departamento de Estatística, IMECC-UNICAMP, Campinas, São Paulo, Brazil.

出版信息

Stat Med. 2014 Sep 20;33(21):3759-71. doi: 10.1002/sim.6179. Epub 2014 Apr 24.

Abstract

Continuous (clustered) proportion data often arise in various domains of medicine and public health where the response variable of interest is a proportion (or percentage) quantifying disease status for the cluster units, ranging between zero and one. However, because of the presence of relatively disease-free as well as heavily diseased subjects in any study, the proportion values can lie in the interval [0,1]. While beta regression can be adapted to assess covariate effects in these situations, its versatility is often challenged because of the presence/excess of zeros and ones because the beta support lies in the interval (0,1). To circumvent this, we augment the probabilities of zero and one with the beta density, controlling for the clustering effect. Our approach is Bayesian with the ability to borrow information across various stages of the complex model hierarchy and produces a computationally convenient framework amenable to available freeware. The marginal likelihood is tractable and can be used to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. Both simulation studies and application to a real dataset from a clinical periodontology study quantify the gain in model fit and parameter estimation over other ad hoc alternatives and provide quantitative insight into assessing the true covariate effects on the proportion responses.

摘要

连续(聚类)比例数据经常出现在医学和公共卫生的各个领域,其中感兴趣的响应变量是一个比例(或百分比),用于量化聚类单元的疾病状态,范围在0到1之间。然而,由于在任何研究中都存在相对无病以及患病严重的受试者,比例值可能落在区间[0,1]内。虽然贝塔回归可以用于评估这些情况下的协变量效应,但其通用性常常受到挑战,因为存在零值和一值过多的情况,因为贝塔分布的支持区间在(0,1)内。为了规避这一问题,我们用贝塔密度增加零值和一值的概率,同时控制聚类效应。我们的方法是贝叶斯方法,能够在复杂模型层次结构的各个阶段借用信息,并产生一个计算方便的框架,适用于现有的免费软件。边际似然易于处理,可用于基于q散度度量开发贝叶斯案例删除影响诊断。模拟研究和对临床牙周病学研究真实数据集的应用都量化了与其他临时替代方法相比,模型拟合和参数估计方面的改进,并为评估协变量对比例响应的真实影响提供了定量见解。

相似文献

2
Augmented mixed models for clustered proportion data.用于聚类比例数据的增强混合模型。
Stat Methods Med Res. 2017 Apr;26(2):880-897. doi: 10.1177/0962280214561093. Epub 2014 Dec 8.
6
A partially linear additive model for clustered proportion data.针对聚类比例数据的部分线性加性模型。
Stat Med. 2018 Mar 15;37(6):1009-1030. doi: 10.1002/sim.7573. Epub 2017 Dec 15.

本文引用的文献

6
Analysis of data with excess zeros.对含过多零值的数据进行分析。
Stat Methods Med Res. 2002 Aug;11(4):297-302. doi: 10.1191/0962280202sm289ra.
8
Marginal models for longitudinal continuous proportional data.纵向连续比例数据的边际模型。
Biometrics. 2000 Jun;56(2):496-502. doi: 10.1111/j.0006-341x.2000.00496.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验