Suppr超能文献

#AlphaGo 话题网络中的信息流是怎样的?对 Twitter 上大规模信息网络的社会网络分析。

How Did the Information Flow in the #AlphaGo Hashtag Network? A Social Network Analysis of the Large-Scale Information Network on Twitter.

机构信息

Donald P. Bellisario College of Communications, The Pennsylvania State University , University Park, Pennsylvania.

出版信息

Cyberpsychol Behav Soc Netw. 2017 Dec;20(12):746-752. doi: 10.1089/cyber.2016.0572.

Abstract

As it becomes common for Internet users to use hashtags when posting and searching information on social media, it is important to understand who builds a hashtag network and how information is circulated within the network. This article focused on unlocking the potential of the #AlphaGo hashtag network by addressing the following questions. First, the current study examined whether traditional opinion leadership (i.e., the influentials hypothesis) or grassroot participation by the public (i.e., the interpersonal hypothesis) drove dissemination of information in the hashtag network. Second, several unique patterns of information distribution by key users were identified. Finally, the association between attributes of key users who exerted great influence on information distribution (i.e., the number of followers and follows) and their central status in the network was tested. To answer the proffered research questions, a social network analysis was conducted using a large-scale hashtag network data set from Twitter (n = 21,870). The results showed that the leading actors in the network were actively receiving information from their followers rather than serving as intermediaries between the original information sources and the public. Moreover, the leading actors played several roles (i.e., conversation starters, influencers, and active engagers) in the network. Furthermore, the number of their follows and followers were significantly associated with their central status in the hashtag network. Based on the results, the current research explained how the information was exchanged in the hashtag network by proposing the reciprocal model of information flow.

摘要

随着互联网用户在社交媒体上发布和搜索信息时使用标签变得越来越普遍,了解谁构建了标签网络以及信息如何在网络中传播变得尤为重要。本文通过回答以下问题,重点探讨了#AlphaGo 标签网络的潜力。首先,本研究考察了传统的意见领袖(即影响者假说)还是公众的草根参与(即人际假说)推动了标签网络中的信息传播。其次,确定了关键用户的几种独特的信息分布模式。最后,检验了对信息传播产生巨大影响的关键用户(即关注者和被关注者的数量)的属性与其在网络中的中心地位之间的关联。为了回答提出的研究问题,使用来自 Twitter(n=21870)的大规模标签网络数据集进行了社会网络分析。结果表明,网络中的主导角色积极从他们的关注者那里接收信息,而不是充当原始信息源和公众之间的中介。此外,主导角色在网络中扮演了多个角色(即对话发起者、影响者和积极参与者)。此外,他们的关注者和被关注者的数量与他们在标签网络中的中心地位显著相关。基于这些结果,本研究通过提出信息流的互惠模型,解释了信息是如何在标签网络中交换的。

相似文献

2
The Effect of Social Network Size on Hashtag Adoption on Twitter.
Cogn Sci. 2018 Nov;42(8):3149-3158. doi: 10.1111/cogs.12675. Epub 2018 Sep 21.
4
World Antibiotic Awareness Week and European Antibiotic Awareness Day, November 2018: An analysis of the impact of Twitter activity.
Int J Antimicrob Agents. 2020 Dec;56(6):106209. doi: 10.1016/j.ijantimicag.2020.106209. Epub 2020 Nov 4.
5
Hashtag #TBI: A content and network data analysis of tweets about Traumatic Brain Injury.
Brain Inj. 2018;32(1):49-63. doi: 10.1080/02699052.2017.1403047.
6
Qualitative and quantitative evaluation of the use of Twitter as a tool of antimicrobial stewardship.
Int J Med Inform. 2019 Nov;131:103955. doi: 10.1016/j.ijmedinf.2019.103955. Epub 2019 Aug 20.
7
Local Variation of Hashtag Spike Trains and Popularity in Twitter.
PLoS One. 2015 Jul 10;10(7):e0131704. doi: 10.1371/journal.pone.0131704. eCollection 2015.
8
The #VaccinesWork Hashtag on Twitter in the Context of the COVID-19 Pandemic: Network Analysis.
JMIR Public Health Surveill. 2022 Oct 28;8(10):e38153. doi: 10.2196/38153.
9
Diabetes topics associated with engagement on Twitter.
Prev Chronic Dis. 2015 May 7;12:E62. doi: 10.5888/pcd12.140402.
10
Use of Twitter at a major national pharmacy conference.
Am J Health Syst Pharm. 2015 Jan 1;72(1):65-9. doi: 10.2146/ajhp140175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验