Suppr超能文献

探索特征维度以在无信息强化学习任务中学习新策略。

Exploring Feature Dimensions to Learn a New Policy in an Uninformed Reinforcement Learning Task.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea.

KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, 34141, Daejeon, Republic of Korea.

出版信息

Sci Rep. 2017 Dec 15;7(1):17676. doi: 10.1038/s41598-017-17687-2.

Abstract

When making a choice with limited information, we explore new features through trial-and-error to learn how they are related. However, few studies have investigated exploratory behaviour when information is limited. In this study, we address, at both the behavioural and neural level, how, when, and why humans explore new feature dimensions to learn a new policy for choosing a state-space. We designed a novel multi-dimensional reinforcement learning task to encourage participants to explore and learn new features, then used a reinforcement learning algorithm to model policy exploration and learning behaviour. Our results provide the first evidence that, when humans explore new feature dimensions, their values are transferred from the previous policy to the new online (active) policy, as opposed to being learned from scratch. We further demonstrated that exploration may be regulated by the level of cognitive ambiguity, and that this process might be controlled by the frontopolar cortex. This opens up new possibilities of further understanding how humans explore new features in an open-space with limited information.

摘要

当在有限信息的情况下做出选择时,我们通过试错来探索新的特征,以了解它们是如何相关的。然而,很少有研究调查过信息有限时的探索行为。在这项研究中,我们在行为和神经水平上解决了人类如何、何时以及为什么探索新的特征维度,以学习选择状态空间的新策略。我们设计了一个新颖的多维强化学习任务,鼓励参与者探索和学习新的特征,然后使用强化学习算法对策略探索和学习行为进行建模。我们的结果提供了第一个证据,即当人类探索新的特征维度时,它们的值从先前的策略转移到新的在线(主动)策略,而不是从头开始学习。我们进一步证明,探索可能受到认知模糊程度的调节,而这一过程可能由额极前皮质控制。这为进一步理解人类如何在有限信息的开放空间中探索新特征开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d062/5732284/616ccd0d2b53/41598_2017_17687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验