Suppr超能文献

H1 horizontal cells of carp retina have different postsynaptic mechanisms to mediate short- versus long-wavelength visual signals.

作者信息

Yasui S, Yamada M

机构信息

Department of Biological Regulation, National Institute for Basic Biology, Okazaki, Japan.

出版信息

Exp Brain Res. 1989;74(2):256-62. doi: 10.1007/BF00248858.

Abstract

Vertebrate photoreceptors release neurotransmitter substance(s) tonically in the dark and this release is curtailed by light. Recently, we have become increasingly aware of the possibility that short- and long-wavelength visual signals are mediated differently during the synaptic transmission to second-order retinal neurons. The experiment described here advances this notion further by demonstrating a postsynaptic difference. Treatment of the carp retina by dopamine reduced the gap-junctional coupling of horizontal cells, and we made use of this known effect to measure the input resistance (Rin) of H1-type horizontal cells. Flashes of light increased Rin. This increase, however, was found to be smaller with short wavelengths, even though the comparison was made when voltage responses were equal in amplitude. Often, Rin was even found to decrease at the blue end of spectrum. No single postsynaptic mechanism can account for any equal-voltage Rin difference such as this. The synaptic spectral segregation thus revealed is probably subserved by a dual scheme wherein the transmitter from blue-sensitive cone photoreceptors acts to decrease the membrane conductance of H1 cells whereas the synapses made by red- and green-sensitive cones are of a classical excitatory type.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验