Suppr超能文献

一种基于自动图的视网膜图像动静脉分类方法。

An automatic graph-based approach for artery/vein classification in retinal images.

出版信息

IEEE Trans Image Process. 2014 Mar;23(3):1073-83. doi: 10.1109/TIP.2013.2263809. Epub 2013 May 17.

Abstract

The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

摘要

视网膜血管分为动脉/静脉(A/V)是自动检测血管变化和计算与糖尿病、高血压和其他心血管疾病等几种系统性疾病相关特征标志的重要阶段。本文提出了一种基于从视网膜血管系统中提取的图分析的 A/V 分类自动方法。所提出的方法对整个血管树进行分类,确定每个交叉点(图节点)的类型,并为每个血管段(图链路)分配两个标签之一。通过将基于图的标记结果与一组强度特征相结合,对血管段进行 A/V 的最终分类。将该方法的结果与 INSPIRE-AVR、DRIVE 和 VICAVR 三个公共数据库的手动标记进行了比较。对于 INSPIRE-AVR、DRIVE 和 VICAVR 数据库的图像,分别获得了 88.3%、87.4%和 89.8%的准确率。这些结果表明,我们的方法优于最近的 A/V 分类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验