Chatterjee Ankita, Huma Benazir, Shaw Rahul, Kundu Sudip
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
Front Plant Sci. 2017 Nov 30;8:2060. doi: 10.3389/fpls.2017.02060. eCollection 2017.
To combat decrease in rice productivity under different stresses, an understanding of rice metabolism is needed. Though there are different genome scale metabolic models (GSMs) of , no GSM with gene-protein-reaction association exist for . Here, we report a GSM, OSI1136 of , which includes 3602 genes and 1136 metabolic reactions and transporters distributed across the cytosol, mitochondrion, peroxisome, and chloroplast compartments. Flux balance analysis of the model showed that for varying RuBisCO activity (/) (i) the activity of the chloroplastic malate valve increases to transport reducing equivalents out of the chloroplast under increased photorespiratory conditions and (ii) glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase can act as source of cytosolic ATP under decreased photorespiration. Under increasing light conditions we observed metabolic flexibility, involving photorespiration, chloroplastic triose phosphate and the dicarboxylate transporters of the chloroplast and mitochondrion for redox and ATP exchanges across the intracellular compartments. Simulations under different enzymatic cost conditions revealed (i) participation of peroxisomal glutathione-ascorbate cycle in photorespiratory HO metabolism (ii) different modes of the chloroplastic triose phosphate transporters and malate valve, and (iii) two possible modes of chloroplastic Glu-Gln transporter which were related with the activity of chloroplastic and cytosolic isoforms of glutamine synthetase. Altogether, our results provide new insights into plant metabolism.
为应对不同胁迫下水稻生产力的下降,需要了解水稻的新陈代谢。尽管已有不同的水稻基因组规模代谢模型(GSMs),但尚无包含基因-蛋白质-反应关联的GSM。在此,我们报道了一个水稻GSM,即OSI1136,它包括3602个基因和1136个代谢反应及转运体,分布于胞质溶胶、线粒体、过氧化物酶体和叶绿体区室。该模型的通量平衡分析表明,对于不同的核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)活性(/),(i)在光呼吸增强的条件下,叶绿体苹果酸阀的活性增加,以将还原当量转运出叶绿体;(ii)在光呼吸降低时,甘油醛-3-磷酸脱氢酶和3-磷酸甘油酸激酶可作为胞质溶胶ATP的来源。在光照增加的条件下,我们观察到了代谢灵活性,涉及光呼吸、叶绿体磷酸丙糖以及叶绿体和线粒体的二羧酸转运体,用于细胞内区室间的氧化还原和ATP交换。在不同酶促成本条件下的模拟结果显示,(i)过氧化物酶体谷胱甘肽-抗坏血酸循环参与光呼吸H₂O代谢;(ii)叶绿体磷酸丙糖转运体和苹果酸阀的不同模式;(iii)叶绿体谷氨酰胺-谷氨酸转运体的两种可能模式,这与叶绿体和胞质溶胶谷氨酰胺合成酶同工型的活性有关。总之,我们的结果为植物代谢提供了新的见解。