Suppr超能文献

GPRuler:代谢基因-蛋白-反应规则自动重建。

GPRuler: Metabolic gene-protein-reaction rules automatic reconstruction.

机构信息

Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy.

SYSBIO Centre of Systems Biology, Milan, Italy.

出版信息

PLoS Comput Biol. 2021 Nov 8;17(11):e1009550. doi: 10.1371/journal.pcbi.1009550. eCollection 2021 Nov.

Abstract

Metabolic network models are increasingly being used in health care and industry. As a consequence, many tools have been released to automate their reconstruction process de novo. In order to enable gene deletion simulations and integration of gene expression data, these networks must include gene-protein-reaction (GPR) rules, which describe with a Boolean logic relationships between the gene products (e.g., enzyme isoforms or subunits) associated with the catalysis of a given reaction. Nevertheless, the reconstruction of GPRs still remains a largely manual and time consuming process. Aiming at fully automating the reconstruction process of GPRs for any organism, we propose the open-source python-based framework GPRuler. By mining text and data from 9 different biological databases, GPRuler can reconstruct GPRs starting either from just the name of the target organism or from an existing metabolic model. The performance of the developed tool is evaluated at small-scale level for a manually curated metabolic model, and at genome-scale level for three metabolic models related to Homo sapiens and Saccharomyces cerevisiae organisms. By exploiting these models as benchmarks, the proposed tool shown its ability to reproduce the original GPR rules with a high level of accuracy. In all the tested scenarios, after a manual investigation of the mismatches between the rules proposed by GPRuler and the original ones, the proposed approach revealed to be in many cases more accurate than the original models. By complementing existing tools for metabolic network reconstruction with the possibility to reconstruct GPRs quickly and with a few resources, GPRuler paves the way to the study of context-specific metabolic networks, representing the active portion of the complete network in given conditions, for organisms of industrial or biomedical interest that have not been characterized metabolically yet.

摘要

代谢网络模型越来越多地被应用于医疗保健和工业领域。因此,许多工具已经被开发出来,用于自动进行从头重建过程。为了实现基因缺失模拟和基因表达数据的整合,这些网络必须包含基因-蛋白-反应(GPR)规则,这些规则使用布尔逻辑描述与给定反应的催化相关的基因产物(例如,酶同工型或亚基)之间的关系。然而,GPR 的重建仍然是一个主要的手动和耗时的过程。为了完全自动化任何生物体的 GPR 重建过程,我们提出了基于 Python 的开源框架 GPRuler。通过从 9 个不同的生物数据库中挖掘文本和数据,GPRuler 可以从目标生物体的名称或现有的代谢模型开始重建 GPR。所开发工具的性能在手工 curated 代谢模型的小规模水平和与 Homo sapiens 和 Saccharomyces cerevisiae 生物体相关的三个代谢模型的基因组规模水平进行了评估。通过将这些模型用作基准,所提出的工具展示了其以高精度重现原始 GPR 规则的能力。在所测试的所有场景中,在对 GPRuler 提出的规则与原始规则之间的不匹配进行手动调查之后,该方法在许多情况下比原始模型更准确。通过为代谢网络重建补充现有工具,使其能够快速且仅使用少量资源重建 GPR,GPRuler 为研究特定于上下文的代谢网络铺平了道路,这些网络代表了给定条件下完整网络的活跃部分,对于尚未进行代谢表征的具有工业或生物医学意义的生物体而言。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a5/8601613/c7055a93bfc0/pcbi.1009550.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验