Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):70-74. doi: 10.1073/pnas.1717912115. Epub 2017 Dec 18.
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications.
许多组织工程、柔性电子和软机器人应用都需要能够在软材料中生成复杂 3D 结构的方法。在这里,我们提出了一种使用分子自组装生成基于水凝胶的 3D 结构的方法,该方法类似于生物组织形态发生中自下而上过程的吸引人的特征。我们的策略有效地利用了控制生物组织形态发生的三个基本组件(局部化学、物质传输和力学)来产生复杂的 3D 结构:通过控制聚合抑制剂(即氧气)的局部分布、单体/交联剂通过交联聚合物网络的多孔结构的扩散以及机械约束来分别调节局部化学、物质传输和力学。我们表明,氧气在水凝胶聚合中起着类似于生长因子在组织生长中的作用的作用,并且通过单体/交联剂扩散到多孔水凝胶中可以继续生长水凝胶,类似于物质传输促进组织生长的机制。我们通过对动植物组织形态发生的仿生学以及对其他复杂 3D 结构的生成来证明我们的策略的能力和多功能性。我们的技术为研究自然界中许多生长现象和生成复杂 3D 结构以造福各种应用开辟了途径。