Wang Xingmei, Hao Wenqian, Li Qiming
College of Computer Science and Technology, Harbin Engineering University, 145 Nantong Street, Harbin, Heilongjiang Province, 150001, China.
Institute of Acoustics, Chinese Academy of Science, Beijing, 10080, China.
Sci Rep. 2017 Dec 18;7(1):17733. doi: 10.1038/s41598-017-17945-3.
This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.
本文提出一种具有改进量子行为粒子群优化算法的自适应文化算法(ACA - IQPSO)来检测水下声纳图像。在种群空间中,为提高粒子的搜索能力,将迭代次数和粒子的适应度值作为自适应调整量子行为粒子群优化算法(QPSO)收缩扩张系数的因素。改进的量子行为粒子群优化算法(IQPSO)能使粒子根据自身质量调整行为。在信念空间中,采用一种新的更新策略,根据洗牌蛙跳算法(SFLA)中的更新策略思想来更新文化个体。此外,为提高种群空间和信念空间中信息的利用率,在新的通信协议中重新设计了接受函数和影响函数。实验结果表明,ACA - IQPSO能根据水下声纳图像的灰度分布信息获得良好的聚类中心,并准确完成水下目标检测。与其他算法相比,所提出的ACA - IQPSO具有良好的有效性、出色的适应性、强大的搜索能力和较高的收敛效率。同时,基准函数的实验结果能进一步证明所提出的ACA - IQPSO具有更好的搜索能力、收敛效率和稳定性。