Dept of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
MIRA Institute of Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
Sci Rep. 2017 Dec 18;7(1):17729. doi: 10.1038/s41598-017-17790-4.
We propose a surface-electromyographic (sEMG) assisted inverse-modelling (IM) approach for a biomechanical model of the face to obtain realistic person-specific muscle activations (MA) by tracking movements as well as innervation trajectories. We obtained sEMG data of facial muscles and 3D positions of lip markers in six volunteers and, using a generic finite element (FE) face model in ArtiSynth, performed inverse static optimisation with and without sEMG tracking on both simulation data and experimental data. IM with simulated data and experimental data without sEMG data showed good correlations of tracked positions (0.93 and 0.67) and poor correlations of MA (0.27 and 0.20). When utilising the sEMG-assisted IM approach, MA correlations increased drastically (0.83 and 0.59) without sacrificing performance in position correlations (0.92 and 0.70). RMS errors show similar trends with an error of 0.15 in MA and of 1.10 mm in position. Therefore, we conclude that we were able to demonstrate the feasibility of an sEMG-assisted inverse modelling algorithm for the perioral region. This approach may help to solve the ambiguity problem in inverse modelling and may be useful, for instance, in future applications for preoperatively predicting treatment-related function loss.
我们提出了一种基于表面肌电图(sEMG)的反向建模(IM)方法,用于对面部的生物力学模型进行反向建模,以通过跟踪运动和神经支配轨迹来获得逼真的个体特定肌肉激活(MA)。我们在六名志愿者中获得了面部肌肉的 sEMG 数据和唇部标记的 3D 位置,并在 ArtiSynth 中的通用有限元(FE)面部模型中,在模拟数据和实验数据上进行了带和不带 sEMG 跟踪的反向静态优化。使用模拟数据和不带 sEMG 数据的实验数据进行 IM 时,跟踪位置的相关性很好(0.93 和 0.67),而 MA 的相关性很差(0.27 和 0.20)。当使用 sEMG 辅助的 IM 方法时,MA 的相关性急剧增加(0.83 和 0.59),而位置相关性的性能没有下降(0.92 和 0.70)。RMS 误差显示出相似的趋势,MA 的误差为 0.15,位置的误差为 1.10mm。因此,我们得出结论,我们能够证明基于表面肌电图的口周区域反向建模算法的可行性。这种方法可能有助于解决反向建模中的模糊问题,并且在例如用于预测与术前治疗相关的功能丧失的未来应用中可能很有用。