School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel.
Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.
PLoS One. 2022 Feb 22;17(2):e0262286. doi: 10.1371/journal.pone.0262286. eCollection 2022.
Computer vision (CV) is widely used in the investigation of facial expressions. Applications range from psychological evaluation to neurology, to name just two examples. CV for identifying facial expressions may suffer from several shortcomings: CV provides indirect information about muscle activation, it is insensitive to activations that do not involve visible deformations, such as jaw clenching. Moreover, it relies on high-resolution and unobstructed visuals. High density surface electromyography (sEMG) recordings with soft electrode array is an alternative approach which provides direct information about muscle activation, even from freely behaving humans. In this investigation, we compare CV and sEMG analysis of facial muscle activation. We used independent component analysis (ICA) and multiple linear regression (MLR) to quantify the similarity and disparity between the two approaches for posed muscle activations. The comparison reveals similarity in event detection, but discrepancies and inconsistencies in source identification. Specifically, the correspondence between sEMG and action unit (AU)-based analyses, the most widely used basis of CV muscle activation prediction, appears to vary between participants and sessions. We also show a comparison between AU and sEMG data of spontaneous smiles, highlighting the differences between the two approaches. The data presented in this paper suggests that the use of AU-based analysis should consider its limited ability to reliably compare between different sessions and individuals and highlight the advantages of high-resolution sEMG for facial expression analysis.
计算机视觉(CV)广泛应用于面部表情的研究。其应用范围从心理学评估到神经科学,仅举两个例子。用于识别面部表情的 CV 可能存在以下几个缺点:CV 提供的是肌肉活动的间接信息,对于不涉及可见变形的活动(如咬紧牙关)不敏感。此外,它依赖于高分辨率和无阻碍的视觉。使用软电极阵列的高密度表面肌电图(sEMG)记录是一种替代方法,它提供了关于肌肉活动的直接信息,即使是在自由行为的人中也是如此。在这项研究中,我们比较了 CV 和 sEMG 对面部肌肉激活的分析。我们使用独立成分分析(ICA)和多元线性回归(MLR)来量化两种方法在模拟肌肉激活方面的相似性和差异性。比较结果表明,两种方法在事件检测方面具有相似性,但在源识别方面存在差异和不一致性。具体来说,sEMG 与动作单元(AU)分析之间的对应关系,即 CV 肌肉激活预测最广泛使用的基础,似乎在参与者和会话之间存在差异。我们还展示了自发微笑的 AU 和 sEMG 数据之间的比较,突出了两种方法之间的差异。本文提供的数据表明,基于 AU 的分析的使用应考虑其在不同会话和个体之间可靠比较的能力有限,并突出了高分辨率 sEMG 对面部表情分析的优势。