Suppr超能文献

基于多孔 TiO₂ 的用于网络化学系统的气体传感器,用于提供安全保障和医疗诊断。

Porous TiO₂-Based Gas Sensors for Cyber Chemical Systems to Provide Security and Medical Diagnosis.

机构信息

Sensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy.

出版信息

Sensors (Basel). 2017 Dec 19;17(12):2947. doi: 10.3390/s17122947.

Abstract

Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO₂, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO₂-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO₂ may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material.

摘要

气体传感器在我们的生活中扮演着重要的角色,为技术过程、环境、交通和医疗保健的控制和安全提供保障。因此,高性能气体传感器器件的发展是研究的热点。TiO₂ 具有优异的物理和化学性质,是制造化学传感器的极具吸引力的材料。同时,新兴技术专注于制造更灵活和智能的系统,以实现实时精确监测和诊断。本文提出的网络化学系统基于网络元素与化学传感器设备的集成。这些系统可能对环境和工业安全、危险货物和药品运输的控制产生至关重要的影响。本文综述了近年来用于网络化学系统的多孔 TiO₂ 基化学气体传感器的制备进展,展示了这种模型在提供安全性和进行诊断方面的便利性和可行性。大多数报告表明,基于多孔 TiO₂ 的掺杂、混合和复合材料的制备可以显著改善其传感性能。此外,每个组件对材料的传感性能都有其独特的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2641/5751595/6cd8bc9b78aa/sensors-17-02947-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验