Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany.
Plant Biotechnol J. 2024 May;22(5):1067-1077. doi: 10.1111/pbi.14246. Epub 2023 Nov 24.
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
碱基编辑器可在靶向基因组位点实现精确的核苷酸变化,而无需双链 DNA 断裂或修复模板。TALE-腺嘌呤碱基编辑器(TALE-ABEs)是基因组编辑工具,由转录激活因子样效应物(TALEs)的 DNA 结合域、工程化的腺嘌呤脱氨酶(TadA8e)和胞嘧啶脱氨酶结构域(DddA)组成,可在人线粒体 DNA 中实现 A•T 到 G•C 的编辑。然而,迄今为止,TALE-ABEs 在植物(除叶绿体 DNA 外)中的编辑能力尚未被描述,并且 DddA 如何增强 TadA8e 的功能作用仍不清楚。我们在黄花烟和水稻中测试了一系列具有不同脱氨酶融合结构的 TALE-ABEs。结果表明,双链 DNA 特异性胞嘧啶脱氨酶 DddA 可以增强单链 DNA 特异性脱氨酶(TadA8e 或 APOBEC3A)在双链 DNA 上的活性。我们在 β-葡萄糖醛酸酶报告系统中分析了 A•T 到 G•C 的编辑效率,并在水稻原生质体中显示了高产物纯度的基因组区域中的精确腺嘌呤编辑。此外,我们已成功使用 TALE-ABE 在叶绿体基因组中编辑出具有 A•T 到 G•C 突变的水稻植株。因此,TALE-腺嘌呤碱基编辑器通过编辑核基因组或细胞器基因组,为作物改良和基因治疗提供了替代方法。