Department of Physical Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
Sorbonne Universités, Université de Pierre et Marie Curie Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):186-191. doi: 10.1073/pnas.1711114115. Epub 2017 Dec 19.
A central goal in theoretical neuroscience is to predict the response properties of sensory neurons from first principles. To this end, "efficient coding" posits that sensory neurons encode maximal information about their inputs given internal constraints. There exist, however, many variants of efficient coding (e.g., redundancy reduction, different formulations of predictive coding, robust coding, sparse coding, etc.), differing in their regimes of applicability, in the relevance of signals to be encoded, and in the choice of constraints. It is unclear how these types of efficient coding relate or what is expected when different coding objectives are combined. Here we present a unified framework that encompasses previously proposed efficient coding models and extends to unique regimes. We show that optimizing neural responses to encode predictive information can lead them to either correlate or decorrelate their inputs, depending on the stimulus statistics; in contrast, at low noise, efficiently encoding the past always predicts decorrelation. Later, we investigate coding of naturalistic movies and show that qualitatively different types of visual motion tuning and levels of response sparsity are predicted, depending on whether the objective is to recover the past or predict the future. Our approach promises a way to explain the observed diversity of sensory neural responses, as due to multiple functional goals and constraints fulfilled by different cell types and/or circuits.
理论神经科学的一个主要目标是从第一性原理预测感觉神经元的反应特性。为此,“有效编码”假设感觉神经元在内部约束下对其输入进行最大程度的信息编码。然而,存在许多有效的编码变体(例如,减少冗余、不同的预测编码公式、稳健编码、稀疏编码等),它们在适用范围、与要编码的信号的相关性以及约束的选择上有所不同。目前尚不清楚这些类型的有效编码如何相关,或者当不同的编码目标结合时会有什么预期。在这里,我们提出了一个统一的框架,它包含了以前提出的有效编码模型,并扩展到了独特的领域。我们表明,优化神经响应以编码预测信息可以使它们的输入相关或去相关,具体取决于刺激统计;相比之下,在低噪声下,高效编码过去总是预测去相关。之后,我们研究了自然电影的编码,并表明根据目标是恢复过去还是预测未来,可以预测出不同类型的视觉运动调谐和响应稀疏度。我们的方法有望解释观察到的感觉神经反应的多样性,因为这是由于不同的细胞类型和/或电路具有多种功能目标和约束。