Suppr超能文献

迈向高效、预测和稀疏编码的统一理论。

Toward a unified theory of efficient, predictive, and sparse coding.

机构信息

Department of Physical Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;

Sorbonne Universités, Université de Pierre et Marie Curie Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):186-191. doi: 10.1073/pnas.1711114115. Epub 2017 Dec 19.

Abstract

A central goal in theoretical neuroscience is to predict the response properties of sensory neurons from first principles. To this end, "efficient coding" posits that sensory neurons encode maximal information about their inputs given internal constraints. There exist, however, many variants of efficient coding (e.g., redundancy reduction, different formulations of predictive coding, robust coding, sparse coding, etc.), differing in their regimes of applicability, in the relevance of signals to be encoded, and in the choice of constraints. It is unclear how these types of efficient coding relate or what is expected when different coding objectives are combined. Here we present a unified framework that encompasses previously proposed efficient coding models and extends to unique regimes. We show that optimizing neural responses to encode predictive information can lead them to either correlate or decorrelate their inputs, depending on the stimulus statistics; in contrast, at low noise, efficiently encoding the past always predicts decorrelation. Later, we investigate coding of naturalistic movies and show that qualitatively different types of visual motion tuning and levels of response sparsity are predicted, depending on whether the objective is to recover the past or predict the future. Our approach promises a way to explain the observed diversity of sensory neural responses, as due to multiple functional goals and constraints fulfilled by different cell types and/or circuits.

摘要

理论神经科学的一个主要目标是从第一性原理预测感觉神经元的反应特性。为此,“有效编码”假设感觉神经元在内部约束下对其输入进行最大程度的信息编码。然而,存在许多有效的编码变体(例如,减少冗余、不同的预测编码公式、稳健编码、稀疏编码等),它们在适用范围、与要编码的信号的相关性以及约束的选择上有所不同。目前尚不清楚这些类型的有效编码如何相关,或者当不同的编码目标结合时会有什么预期。在这里,我们提出了一个统一的框架,它包含了以前提出的有效编码模型,并扩展到了独特的领域。我们表明,优化神经响应以编码预测信息可以使它们的输入相关或去相关,具体取决于刺激统计;相比之下,在低噪声下,高效编码过去总是预测去相关。之后,我们研究了自然电影的编码,并表明根据目标是恢复过去还是预测未来,可以预测出不同类型的视觉运动调谐和响应稀疏度。我们的方法有望解释观察到的感觉神经反应的多样性,因为这是由于不同的细胞类型和/或电路具有多种功能目标和约束。

相似文献

1
Toward a unified theory of efficient, predictive, and sparse coding.迈向高效、预测和稀疏编码的统一理论。
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):186-191. doi: 10.1073/pnas.1711114115. Epub 2017 Dec 19.
2
Functional diversity among sensory neurons from efficient coding principles.从有效编码原理看感觉神经元的功能多样性。
PLoS Comput Biol. 2019 Nov 14;15(11):e1007476. doi: 10.1371/journal.pcbi.1007476. eCollection 2019 Nov.
3
How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits?高效编码策略如何依赖于神经回路中噪声的起源?
PLoS Comput Biol. 2016 Oct 14;12(10):e1005150. doi: 10.1371/journal.pcbi.1005150. eCollection 2016 Oct.
4
Jointly efficient encoding and decoding in neural populations.神经群体中的联合有效编码和解码。
PLoS Comput Biol. 2024 Jul 10;20(7):e1012240. doi: 10.1371/journal.pcbi.1012240. eCollection 2024 Jul.
7
Efficient population coding depends on stimulus convergence and source of noise.有效的群体编码取决于刺激的汇聚和噪声源。
PLoS Comput Biol. 2021 Apr 26;17(4):e1008897. doi: 10.1371/journal.pcbi.1008897. eCollection 2021 Apr.
8
Efficient sensory coding of multidimensional stimuli.多维刺激的高效感觉编码。
PLoS Comput Biol. 2020 Sep 24;16(9):e1008146. doi: 10.1371/journal.pcbi.1008146. eCollection 2020 Sep.
9
Efficient coding of natural scenes improves neural system identification.自然场景的高效编码能改善神经系统辨识。
PLoS Comput Biol. 2023 Apr 24;19(4):e1011037. doi: 10.1371/journal.pcbi.1011037. eCollection 2023 Apr.

引用本文的文献

1
Optimal feature encoding in early vision.早期视觉中的最优特征编码
Sci Rep. 2025 Jul 3;15(1):23794. doi: 10.1038/s41598-025-07644-9.
3
Relating sparse and predictive coding to divisive normalization.将稀疏编码和预测编码与归一化相联系。
PLoS Comput Biol. 2025 May 27;21(5):e1013059. doi: 10.1371/journal.pcbi.1013059. eCollection 2025 May.
5
Power-law adaptation in the presynaptic vesicle cycle.突触前囊泡循环中的幂律适应性。
Commun Biol. 2025 Apr 2;8(1):542. doi: 10.1038/s42003-025-07956-6.
6
A prospective code for value in the serotonin system.血清素系统中价值的前瞻性编码。
Nature. 2025 May;641(8064):952-959. doi: 10.1038/s41586-025-08731-7. Epub 2025 Mar 26.
7
Learning reshapes the hippocampal representation hierarchy.学习重塑海马体表征层次结构。
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2417025122. doi: 10.1073/pnas.2417025122. Epub 2025 Mar 10.

本文引用的文献

1
Theory of cortical function.皮质功能理论。
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1773-1782. doi: 10.1073/pnas.1619788114. Epub 2017 Feb 6.
3
Predictive information in a sensory population.感觉群体中的预测信息。
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6908-13. doi: 10.1073/pnas.1506855112. Epub 2015 May 18.
5
A simple model of optimal population coding for sensory systems.一种用于感觉系统的最优群体编码简单模型。
PLoS Comput Biol. 2014 Aug 14;10(8):e1003761. doi: 10.1371/journal.pcbi.1003761. eCollection 2014 Aug.
6
Predictive coding of dynamical variables in balanced spiking networks.平衡尖峰网络中动态变量的预测编码。
PLoS Comput Biol. 2013;9(11):e1003258. doi: 10.1371/journal.pcbi.1003258. Epub 2013 Nov 14.
8
Local statistics in natural scenes predict the saliency of synthetic textures.自然场景中的局部统计量可预测合成纹理的显著性。
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18149-54. doi: 10.1073/pnas.0914916107. Epub 2010 Oct 5.
9
Optimal population coding by noisy spiking neurons.噪声神经元的最优群体编码。
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14419-24. doi: 10.1073/pnas.1004906107. Epub 2010 Jul 26.
10
A spiking neuron as information bottleneck.尖峰神经元作为信息瓶颈。
Neural Comput. 2010 Aug;22(8):1961-92. doi: 10.1162/neco.2010.08-09-1084.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验