Suppr超能文献

对未来输入的预测解释了初级视觉皮层中的侧向连接。

Prediction of future input explains lateral connectivity in primary visual cortex.

作者信息

Klavinskis-Whiting Sebastian, Fristed Emil, Singer Yosef, Iacaruso M Florencia, King Andrew J, Harper Nicol S

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.

Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK.

出版信息

Curr Biol. 2025 Feb 3;35(3):530-541.e5. doi: 10.1016/j.cub.2024.11.073. Epub 2025 Jan 10.

Abstract

Neurons in primary visual cortex (V1) show a remarkable functional specificity in their pre- and postsynaptic partners. Recent work has revealed a variety of wiring biases describing how the short- and long-range connections of V1 neurons relate to their tuning properties. However, it is less clear whether these connectivity rules are based on some underlying principle of cortical organization. Here, we show that the functional specificity of V1 connections emerges naturally in a recurrent neural network optimized to predict upcoming sensory inputs for natural visual stimuli. This temporal prediction model reproduces the complex relationships between the connectivity of V1 neurons and their orientation and direction preferences, the tendency of highly connected neurons to respond more similarly to natural movies, and differences in the functional connectivity of excitatory and inhibitory V1 populations. Together, these findings provide a principled explanation for the functional and anatomical properties of early sensory cortex.

摘要

初级视觉皮层(V1)中的神经元在其突触前和突触后伙伴中表现出显著的功能特异性。最近的研究揭示了各种布线偏向,描述了V1神经元的短程和长程连接如何与其调谐特性相关。然而,这些连接规则是否基于皮层组织的某些潜在原则尚不清楚。在这里,我们表明,V1连接的功能特异性在一个循环神经网络中自然出现,该网络经过优化以预测自然视觉刺激的即将到来的感觉输入。这个时间预测模型再现了V1神经元的连接性与其方向和方向偏好之间的复杂关系、高度连接的神经元对自然电影反应更相似的趋势,以及兴奋性和抑制性V1群体功能连接的差异。总之,这些发现为早期感觉皮层的功能和解剖特性提供了一个有原则的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56f1/7617481/073552d4993b/EMS203656-f007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验