From the Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General and University of California, San Francisco, California 94110 and
the Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94143.
J Biol Chem. 2018 Feb 9;293(6):1875-1886. doi: 10.1074/jbc.RA117.000754. Epub 2017 Dec 19.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) down-regulates the low-density lipoprotein (LDL) receptor, elevating LDL cholesterol and accelerating atherosclerotic heart disease, making it a promising cardiovascular drug target. To achieve its maximal effect on the LDL receptor, PCSK9 requires autoproteolysis. After cleavage, PCSK9 retains its prodomain in the active site as a self-inhibitor. Unlike other proprotein convertases, however, this retention is permanent, inhibiting any further protease activity for the remainder of its life cycle. Such inhibition has proven a major challenge toward a complete biochemical characterization of PCSK9's proteolytic function, which could inform therapeutic approaches against its hypercholesterolemic effects. To address this challenge, we employed a cell-based, high-throughput method using a luciferase readout to evaluate the single-turnover PCSK9 proteolytic event. We combined this method with saturation mutagenesis libraries to interrogate the sequence specificities of PCSK9 cleavage and proteolysis-independent secretion. Our results highlight several key differences in sequence identity between these two steps, complement known structural data, and suggest that PCSK9 self-proteolysis is the rate-limiting step of secretion. Additionally, we found that for missense SNPs within PCSK9, alterations in both proteolysis and secretion are common. Last, we show that some SNPs allosterically modulate PCSK9's substrate sequence specificity. Our findings indicate that PCSK9 proteolysis acts as a commonly perturbed but critical switch in controlling lipid homeostasis and provide a new hope for the development of small-molecule PCSK9 inhibitors.
前蛋白转化酶枯草溶菌素/糜蛋白酶 9(PCSK9)下调低密度脂蛋白(LDL)受体,升高 LDL 胆固醇并加速动脉粥样硬化性心脏病,使其成为有前途的心血管药物靶点。为了使 PCSK9 对 LDL 受体产生最大的作用,PCSK9 需要自身水解。切割后,PCSK9 将其前导序列保留在活性部位作为自我抑制剂。然而,与其他蛋白水解酶不同,这种保留是永久性的,抑制了其生命周期剩余时间内任何进一步的蛋白酶活性。这种抑制已被证明是对 PCSK9 蛋白水解功能进行完整生化表征的主要挑战,这可以为针对其高胆固醇血症作用的治疗方法提供信息。为了解决这一挑战,我们采用了基于细胞的高通量方法,使用荧光素酶读数来评估单次 PCSK9 蛋白水解事件。我们将这种方法与饱和突变文库相结合,以探究 PCSK9 切割和非依赖性分泌的序列特异性。我们的结果突出了这两个步骤之间在序列同一性方面的几个关键差异,补充了已知的结构数据,并表明 PCSK9 自身水解是分泌的限速步骤。此外,我们发现 PCSK9 中的错义 SNP 会同时改变蛋白水解和分泌。最后,我们表明一些 SNP 变构调节 PCSK9 的底物序列特异性。我们的发现表明 PCSK9 蛋白水解作为控制脂质稳态的共同扰动但关键开关起作用,并为开发小分子 PCSK9 抑制剂提供了新的希望。