Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
MOST Taiwan Consortium of Emergent Crystalline Materials (TECCM), Department of Materials and Optoelectronic Science, National SunYat-Sen University, Kaohsiung, Taiwan, 80424, China.
Nat Commun. 2017 Dec 19;8(1):2178. doi: 10.1038/s41467-017-02197-6.
The functionalities of porous materials could be significantly enhanced if the materials themselves were in single-crystal form, which, owing to structural coherence, would reduce electronic and optical scattering effects. However, growing macroporous single crystals remains a fundamental challenge, let alone manufacturing crystals large enough to be of practical use. Here we demonstrate a straightforward, inexpensive, versatile method for creating macroporous gallium nitride single crystals on a centimetre scale. The synthetic strategy is built upon a disruptive crystal growth mechanism that utilises direct nitridation of a parent LiGaO single crystal rendering an inward epitaxial growth process. Strikingly, the resulting single crystals exhibit electron mobility comparable to that for bulk crystals grown by the conventional sodium flux method. This approach not only affords control of both crystal and pore size through synthetic modification, but proves generic, thus opening up the possibility of designing macroporous crystals in a wealth of other materials.
如果材料本身是单晶形式,多孔材料的功能可以得到显著增强,因为单晶形式在结构上是连贯的,这将减少电子和光学散射效应。然而,生长大孔单晶仍然是一个基本的挑战,更不用说制造出足够大的晶体以供实际使用了。在这里,我们展示了一种在厘米尺度上制造氮化镓大孔单晶的简单、廉价、通用的方法。该合成策略基于一种破坏性的晶体生长机制,利用母体 LiGaO 单晶的直接氮化作用,实现了向内的外延生长过程。引人注目的是,所得到的单晶表现出与通过传统的钠通量法生长的体单晶相当的电子迁移率。这种方法不仅可以通过合成改性来控制晶体和孔径,而且还具有通用性,因此为在许多其他材料中设计大孔晶体开辟了可能性。