Suppr超能文献

流式细胞术和共聚焦显微镜下人类和小鼠中性粒细胞胞外诱捕网的计算检测和定量。

Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy.

机构信息

Department of Pathology & Anatomical Sciences, SUNY Buffalo, USA.

Department of Immunology, Roswell Park Cancer Institute (RPCI), Buffalo, USA.

出版信息

Sci Rep. 2017 Dec 19;7(1):17755. doi: 10.1038/s41598-017-18099-y.

Abstract

Neutrophil extracellular traps (NETs) are extracellular defense mechanisms used by neutrophils, where chromatin is expelled together with histones and granular/cytoplasmic proteins. They have become an immunology hotspot, implicated in infections, but also in a diverse array of diseases such as systemic lupus erythematosus, diabetes, and cancer. However, the precise assessment of in vivo relevance in different disease settings has been hampered by limited tools to quantify occurrence of extracellular traps in experimental models and human samples. To expedite progress towards improved quantitative tools, we have developed computational pipelines to identify extracellular traps from an in vitro human samples visualized using the ImageStream platform (Millipore Sigma, Darmstadt, Germany), and confocal images of an in vivo mouse disease model of aspergillus fumigatus pneumonia. Our two in vitro methods, tested on n = 363/n =145 images respectively, achieved holdout sensitivity/specificity 0.98/0.93 and 1/0.92. Our unsupervised method for thin lung tissue sections in murine fungal pneumonia achieved sensitivity/specificity 0.99/0.98 in n = 14 images. Our supervised method for thin lung tissue classified NETs with sensitivity/specificity 0.86/0.90. We expect that our approach will be of value for researchers, and have application in infectious and inflammatory diseases.

摘要

中性粒细胞胞外陷阱 (NETs) 是中性粒细胞使用的一种细胞外防御机制,其中染色质与组蛋白和颗粒/细胞质蛋白一起被排出。它们已成为免疫热点,与感染有关,但也与多种疾病有关,如系统性红斑狼疮、糖尿病和癌症。然而,由于在实验模型和人类样本中定量检测细胞外陷阱的工具有限,因此在不同疾病情况下对其体内相关性的精确评估受到了阻碍。为了加快开发更好的定量工具的进展,我们开发了计算管道,以从使用 ImageStream 平台 (德国达姆施塔特的密理博西格玛公司) 可视化的体外人类样本和曲霉性肺炎的体内小鼠疾病模型的共聚焦图像中识别细胞外陷阱。我们的两种体外方法分别在 n=363/n=145 张图像上进行了测试,其留一法灵敏度/特异性为 0.98/0.93 和 1/0.92。我们用于小鼠真菌性肺炎薄肺组织切片的无监督方法在 n=14 张图像中实现了 0.99/0.98 的灵敏度/特异性。我们用于薄肺组织的有监督方法将 NETs 的灵敏度/特异性分类为 0.86/0.90。我们预计我们的方法将对研究人员具有价值,并在感染和炎症性疾病中有应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验