Suppr超能文献

利用机器学习实现对极性分子的量子门控制。

Quantum gate control of polar molecules with machine learning.

作者信息

Zhang Zuo-Yuan, Hu Jie-Ru, Fang Yu-Yan, Li Jin-Fang, Liu Jin-Ming, Huang Xinning, Sun Zhaoxi

机构信息

College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

出版信息

J Chem Phys. 2024 Jul 21;161(3). doi: 10.1063/5.0216013.

Abstract

We propose a scheme for achieving basic quantum gates using ultracold polar molecules in pendular states. The qubits are encoded in the YbF molecules trapped in an electric field with a certain gradient and coupled by the dipole-dipole interaction. The time-dependent control sequences consisting of multiple pulses are considered to interact with the pendular qubits. To achieve high-fidelity quantum gates, we map the control problem for the coupled molecular system into a Markov decision process and deal with it using the techniques of deep reinforcement learning (DRL). By training the agents over multiple episodes, the optimal control pulse sequences for the two-qubit gates of NOT, controlled NOT, and Hadamard are discovered with high fidelities. Moreover, the population dynamics of YbF molecules driven by the discovered gate sequences are analyzed in detail. Furthermore, by combining the optimal gate sequences, we successfully simulate the quantum circuit for entanglement. Our findings could offer new insights into efficiently controlling molecular systems for practical molecule-based quantum computing using DRL.

摘要

我们提出了一种利用处于摆动态的超冷极性分子实现基本量子门的方案。量子比特编码在被困于具有一定梯度的电场中的YbF分子中,并通过偶极 - 偶极相互作用进行耦合。考虑由多个脉冲组成的随时间变化的控制序列与摆动态量子比特相互作用。为了实现高保真量子门,我们将耦合分子系统的控制问题映射为马尔可夫决策过程,并使用深度强化学习(DRL)技术来处理它。通过在多个情节上训练智能体,发现了用于非门、受控非门和哈达玛门的两比特门的最优控制脉冲序列,且具有高保真度。此外,详细分析了由发现的门序列驱动的YbF分子的布居动力学。此外,通过组合最优门序列,我们成功模拟了纠缠量子电路。我们的研究结果可为利用DRL有效控制分子系统以实现基于分子的实际量子计算提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验