Suppr超能文献

引出专家判断的五步方法提案。

Proposal for a Five-Step Method to Elicit Expert Judgment.

作者信息

Veen Duco, Stoel Diederick, Zondervan-Zwijnenburg Mariëlle, van de Schoot Rens

机构信息

Department of Methods and Statistics, Utrecht University, Utrecht, Netherlands.

ProfitWise International B.V., Amsterdam, Netherlands.

出版信息

Front Psychol. 2017 Dec 5;8:2110. doi: 10.3389/fpsyg.2017.02110. eCollection 2017.

Abstract

Elicitation is a commonly used tool to extract viable information from experts. The information that is held by the expert is extracted and a probabilistic representation of this knowledge is constructed. A promising avenue in psychological research is to incorporated experts' prior knowledge in the statistical analysis. Systematic reviews on elicitation literature however suggest that it might be inappropriate to directly obtain distributional representations from experts. The literature qualifies experts' performance on estimating elements of a distribution as unsatisfactory, thus reliably specifying the essential elements of the parameters of interest in one elicitation step seems implausible. Providing feedback within the elicitation process can enhance the quality of the elicitation and interactive software can be used to facilitate the feedback. Therefore, we propose to decompose the elicitation procedure into smaller steps with adjustable outcomes. We represent the tacit knowledge of experts as a location parameter and their uncertainty concerning this knowledge by a scale and shape parameter. Using a feedback procedure, experts can accept the representation of their beliefs or adjust their input. We propose a Five-Step Method which consists of (1) Eliciting the location parameter using the trial roulette method. (2) Provide feedback on the location parameter and ask for confirmation or adjustment. (3) Elicit the scale and shape parameter. (4) Provide feedback on the scale and shape parameter and ask for confirmation or adjustment. (5) Use the elicited and calibrated probability distribution in a statistical analysis and update it with data or to compute a prior-data conflict within a Bayesian framework. User feasibility and internal validity for the Five-Step Method are investigated using three elicitation studies.

摘要

启发式方法是从专家那里提取可行信息的常用工具。专家所拥有的信息被提取出来,并构建该知识的概率表示。心理学研究中一个有前景的途径是在统计分析中纳入专家的先验知识。然而,对启发式文献的系统综述表明,直接从专家那里获得分布表示可能不合适。文献认为专家在估计分布元素方面的表现不尽人意,因此在一个启发式步骤中可靠地指定感兴趣参数的基本元素似乎不太可行。在启发式过程中提供反馈可以提高启发式的质量,并且可以使用交互式软件来促进反馈。因此,我们建议将启发式程序分解为具有可调整结果的较小步骤。我们将专家的隐性知识表示为一个位置参数,并通过一个尺度和形状参数表示他们对该知识的不确定性。使用反馈程序,专家可以接受对其信念的表示或调整其输入。我们提出了一种五步方法,该方法包括:(1)使用试验轮盘法引出位置参数。(2)提供关于位置参数的反馈,并要求确认或调整。(3)引出尺度和形状参数。(4)提供关于尺度和形状参数的反馈,并要求确认或调整。(5)在统计分析中使用引出并校准的概率分布,并用数据更新它或在贝叶斯框架内计算先验 - 数据冲突。使用三项启发式研究对五步方法的用户可行性和内部有效性进行了调查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a32f/5723340/4af857cbe71f/fpsyg-08-02110-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验