Suppr超能文献

基于系统文献检索和专家启发的贝叶斯 PTSD 轨迹分析。

Bayesian PTSD-Trajectory Analysis with Informed Priors Based on a Systematic Literature Search and Expert Elicitation.

机构信息

a Department of Methods and Statistics , Utrecht University.

b Optentia Research Program, Faculty of Humanities , North-West University.

出版信息

Multivariate Behav Res. 2018 Mar-Apr;53(2):267-291. doi: 10.1080/00273171.2017.1412293. Epub 2018 Jan 11.

Abstract

There is a recent increase in interest of Bayesian analysis. However, little effort has been made thus far to directly incorporate background knowledge via the prior distribution into the analyses. This process might be especially useful in the context of latent growth mixture modeling when one or more of the latent groups are expected to be relatively small due to what we refer to as limited data. We argue that the use of Bayesian statistics has great advantages in limited data situations, but only if background knowledge can be incorporated into the analysis via prior distributions. We highlight these advantages through a data set including patients with burn injuries and analyze trajectories of posttraumatic stress symptoms using the Bayesian framework following the steps of the WAMBS-checklist. In the included example, we illustrate how to obtain background information using previous literature based on a systematic literature search and by using expert knowledge. Finally, we show how to translate this knowledge into prior distributions and we illustrate the importance of conducting a prior sensitivity analysis. Although our example is from the trauma field, the techniques we illustrate can be applied to any field.

摘要

目前人们对贝叶斯分析越来越感兴趣。然而,到目前为止,很少有人努力通过先验分布将背景知识直接纳入分析中。当由于我们所谓的有限数据而导致一个或多个潜在组预计相对较小时,此过程在潜在增长混合建模的上下文中可能特别有用。我们认为,在有限数据情况下使用贝叶斯统计具有很大的优势,但前提是可以通过先验分布将背景知识纳入分析中。我们通过一个包括烧伤患者的数据集突出了这些优势,并使用贝叶斯框架按照 WAMBS 清单的步骤分析创伤后应激症状的轨迹。在包括的示例中,我们说明了如何使用基于系统文献检索的先前文献和专家知识来获取背景信息。最后,我们展示了如何将此知识转换为先验分布,并说明了进行先验敏感性分析的重要性。尽管我们的示例来自创伤领域,但我们说明的技术可以应用于任何领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验