Deev Sergey L, Paramonov Alexander S, Shestakova Tatyana S, Khalymbadzha Igor A, Chupakhin Oleg N, Subbotina Julia O, Eltsov Oleg S, Slepukhin Pavel A, Rusinov Vladimir L, Arseniev Alexander S, Shenkarev Zakhar O
Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia.
Beilstein J Org Chem. 2017 Nov 29;13:2535-2548. doi: 10.3762/bjoc.13.250. eCollection 2017.
Determining the accurate chemical structures of synthesized compounds is essential for biomedical studies and computer-assisted drug design. The unequivocal determination of N-adamantylation or N-arylation site(s) in nitrogen-rich heterocycles, characterized by a low density of hydrogen atoms, using NMR methods at natural isotopic abundance is difficult. In these compounds, the heterocyclic moiety is covalently attached to the carbon atom of the substituent group that has no bound hydrogen atoms, and the connection between the two moieties of the compound cannot always be established via conventional H-H and H-C NMR correlation experiments (COSY and HMBC, respectively) or nuclear Overhauser effect spectroscopy (NOESY or ROESY). The selective incorporation of N-labelled atoms in different positions of the heterocyclic core allowed for the use of H-N () and C-N () coupling constants for the structure determinations of N-alkylated nitrogen-containing heterocycles in solution. This method was tested on the N-adamantylated products in a series of azolo-1,2,4-triazines and 1,2,4-triazolo[1,5-]pyrimidine. The syntheses of adamantylated azolo-azines were based on the interactions of azolo-azines and 1-adamatanol in TFA solution. For azolo-1,2,4-triazinones, the formation of mixtures of -adamantyl derivatives was observed. The and values were measured using amplitude-modulated 1D H spin-echo experiments with the selective inversion of the N nuclei and line-shape analysis in the 1D С spectra acquired with selective N decoupling, respectively. Additional spin-spin interactions were detected in the N-HMBC spectra. NMR data and DFT (density functional theory) calculations permitted to suggest a possible mechanism of isomerization for the adamantylated products of the azolo-1,2,4-triazines. The combined analysis of the and couplings in N-labelled compounds provides an efficient method for the structure determination of N-alkylated azolo-azines even in the case of isomer formation. The isomerization of adamantylated tetrazolo[1,5-][1,2,4]triazin-7-ones in acidic conditions occurs through the formation of the adamantyl cation.
确定合成化合物的准确化学结构对于生物医学研究和计算机辅助药物设计至关重要。使用天然同位素丰度的核磁共振方法明确确定富含氮的杂环中N-金刚烷基化或N-芳基化位点(以氢原子密度低为特征)是困难的。在这些化合物中,杂环部分共价连接到没有氢原子键合的取代基的碳原子上,并且化合物的两个部分之间的连接不能总是通过传统的H-H和H-C核磁共振相关实验(分别为COSY和HMBC)或核Overhauser效应光谱(NOESY或ROESY)来建立。在杂环核心的不同位置选择性掺入N标记的原子允许使用H-N()和C-N()耦合常数来确定溶液中N-烷基化含氮杂环的结构。该方法在一系列唑并-1,2,4-三嗪和1,2,4-三唑并[1,5 - ]嘧啶中的N-金刚烷基化产物上进行了测试。金刚烷基化唑并嗪的合成基于唑并嗪与1-金刚烷醇在TFA溶液中的相互作用。对于唑并-1,2,4-三嗪酮,观察到了 - 金刚烷基衍生物混合物的形成。和值分别使用具有N核选择性反转的幅度调制1D H自旋回波实验和在通过选择性N去耦获得的1D С光谱中进行线形分析来测量。在N-HMBC光谱中检测到了额外的自旋 - 自旋相互作用。核磁共振数据和DFT(密度泛函理论)计算允许推测唑并-1,2,4-三嗪的金刚烷基化产物的异构化可能机制。即使在形成异构体的情况下,对N标记化合物中的和耦合进行联合分析也为N-烷基化唑并嗪的结构确定提供了一种有效的方法。酸性条件下金刚烷基化四唑并[1,5 - ][1,2,4]三嗪-7-酮的异构化通过金刚烷基阳离子的形成而发生。