Koch Mathilde, Duigou Thomas, Carbonell Pablo, Faulon Jean-Loup
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
J Cheminform. 2017 Dec 19;9(1):64. doi: 10.1186/s13321-017-0252-9.
Network generation tools coupled with chemical reaction rules have been mainly developed for synthesis planning and more recently for metabolic engineering. Using the same core algorithm, these tools apply a set of rules to a source set of compounds, stopping when a sink set of compounds has been produced. When using the appropriate sink, source and rules, this core algorithm can be used for a variety of applications beyond those it has been developed for.
Here, we showcase the use of the open source workflow RetroPath2.0. First, we mathematically prove that we can generate all structural isomers of a molecule using a reduced set of reaction rules. We then use this enumeration strategy to screen the chemical space around a set of monomers and predict their glass transition temperatures, as well as around aminoglycosides to search structures maximizing antibacterial activity. We also perform a screening around aminoglycosides with enzymatic reaction rules to ensure biosynthetic accessibility. We finally use our workflow on an E. coli model to complete E. coli metabolome, with novel molecules generated using promiscuous enzymatic reaction rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate interfacing our workflow with OpenMS through the KNIME Analytics Platform.
We provide an easy to use and modify, modular, and open-source workflow. We demonstrate its versatility through a variety of use cases including molecular structure enumeration, virtual screening in the chemical space, and metabolome completion. Because it is open source and freely available on MyExperiment.org, workflow community contributions should likely expand further the features of the tool, even beyond the use cases presented in the paper.
结合化学反应规则的网络生成工具主要用于合成规划,最近也用于代谢工程。这些工具使用相同的核心算法,将一组规则应用于化合物源集,当生成化合物汇集时停止。当使用合适的汇、源和规则时,该核心算法可用于其开发目的之外的各种应用。
在此,我们展示了开源工作流程RetroPath2.0的使用。首先,我们通过数学证明,我们可以使用一组简化的反应规则生成分子的所有结构异构体。然后,我们使用这种枚举策略筛选一组单体周围的化学空间,并预测它们的玻璃化转变温度,以及在氨基糖苷类周围搜索使抗菌活性最大化的结构。我们还使用酶促反应规则对氨基糖苷类进行筛选,以确保生物合成的可及性。最后,我们在大肠杆菌模型上使用我们的工作流程来完善大肠杆菌代谢组,使用混杂的酶促反应规则生成新分子。通过KNIME分析平台,在与我们的工作流程接口的大肠杆菌细胞裂解物的质谱上搜索这些新分子。
我们提供了一个易于使用和修改、模块化且开源的工作流程。我们通过各种用例展示了它的多功能性,包括分子结构枚举、化学空间中的虚拟筛选和代谢组完成。由于它是开源的且可在MyExperiment.org上免费获取,工作流程社区的贡献可能会进一步扩展该工具的功能,甚至超出本文中介绍的用例。