Department of Mathematics and Statistics, American University, Washington, DC, United States.
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Elife. 2017 Dec 20;6:e28629. doi: 10.7554/eLife.28629.
Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite , the fungus , and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations.
适应度是进化生物学中的一个核心概念。然而,在实践中,几乎不可能测量自然种群中所有基因型的适应度。在这里,我们提出了定量工具,用于在适应度景观由于不精确的测量或缺失的观察而仅不完全确定的情况下,对上位基因相互作用进行推断。我们证明,即使在部分适应度等级中,遗传相互作用也可以从适应度等级排序中推断出来,其中所有基因型都根据适应度进行排序。我们提供了一个完整的等级排序特征,它意味着更高阶的上位性。我们的理论适用于所有常见类型的基因相互作用,并促进了对各种遗传相互作用的综合研究。我们分析了各种遗传系统,包括 HIV-1、引起疟疾的寄生虫、真菌和与抗生素耐药性相关的 TEM 家族β-内酰胺酶。对于所有系统,我们的方法都揭示了突变之间的高阶相互作用。