Knies Jennifer L, Cai Fei, Weinreich Daniel M
Department of Ecology and Evolutionary Biology, Brown University, Providence, RI.
Mol Biol Evol. 2017 May 1;34(5):1040-1054. doi: 10.1093/molbev/msx053.
A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation. Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes' contributions to organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This observation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 β-lactamase that jointly increase cefotaxime Minimum Inhibitory Concentration (MIC) ∼1500-fold. First, we report enzymatic efficiency (kcat/KM) and thermostability (Tm, and thence ΔG of folding) for all combinations of these mutations. Next, we fit a quantitative model that predicts MIC as a function of kcat/KM and ΔG. While kcat/KM explains ∼54% of the variance in cefotaxime MIC (∼92% after log transformation), ΔG does not improve explanatory power of the model. We also find that cefotaxime MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively "well-behaved" system.
进化遗传学中一个主要的智力挑战是确定驱动适应性的特定表型。酶为研究这个问题提供了一个特别有前景的机会,因为许多酶对生物体适应性的贡献取决于相对较少的可通过实验获取的特性。此外,从基本原理来看,酶热稳定性的要求与催化活性的要求是相互对立的。这一观察结果,再加上酶只是略微耐热稳定这一事实,促使人们广泛持有这样一种假设,即赋予功能改善的突变需要补偿性突变来恢复热稳定性。在这里,我们首次明确检验了这一假设,使用了TEM - 1β - 内酰胺酶中的四个错义突变,这些突变共同使头孢噻肟的最低抑菌浓度(MIC)增加了约1500倍。首先,我们报告了这些突变所有组合的酶促效率(kcat/KM)和热稳定性(Tm,进而得到折叠的ΔG)。接下来,我们拟合了一个定量模型,该模型将MIC预测为kcat/KM和ΔG的函数。虽然kcat/KM解释了头孢噻肟MIC中约54%的方差(对数转换后约为92%),但ΔG并没有提高模型的解释力。我们还发现,头孢噻肟MIC在kcat/KM中的上升速度比预测的要慢。针对这些差异提出了几种解释。最后,我们证明了在MIC和kcat/KM中存在显著的符号上位性,以及表型之间的拮抗多效性,尽管该系统在数值上几乎是可加性的。因此,在一个相对“行为良好”的系统中,观察到了对选择性可达轨迹的限制,以及我们在根据潜在机制解释此类限制方面能力的局限性。