Suppr超能文献

在 STM 断裂结内检测机械化学阻转异构化。

Detecting Mechanochemical Atropisomerization within an STM Break Junction.

机构信息

Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool , Liverpool L69 7ZD, U.K.

Surface Science Research Centre and Department of Chemistry, University of Liverpool , Oxford Street, Liverpool L69 3BX, U.K.

出版信息

J Am Chem Soc. 2018 Jan 17;140(2):710-718. doi: 10.1021/jacs.7b10542. Epub 2018 Jan 4.

Abstract

We have employed the scanning tunneling microscope break-junction technique to investigate the single-molecule conductance of a family of 5,15-diaryl porphyrins bearing thioacetyl (SAc) or methylsulfide (SMe) binding groups at the ortho position of the phenyl rings (S2 compounds). These ortho substituents lead to two atropisomers, cis and trans, for each compound, which do not interconvert in solution under ambient conditions; even at high temperatures, isomerization takes several hours (half-life 15 h at 140 °C for SAc in CClD). All the S2 compounds exhibit two conductance groups, and comparison with a monothiolated (S1) compound shows the higher group arises from a direct Au-porphyrin interaction. The lower conductance group is associated with the S-to-S pathway. When the binding group is SMe, the difference in junction length distribution reflects the difference in S-S distance (0.3 nm) between the two isomers. In the case of SAc, there are no significant differences between the plateau length distributions of the two isomers, and both show maximal stretching distances well exceeding their calculated junction lengths. Contact deformation accounts for part of the extra length, but the results indicate that cis-to-trans conversion takes place in the junction for the cis isomer. The barrier to atropisomerization is lower than the strength of the thiolate Au-S and Au-Au bonds, but higher than that of the Au-SMe bond, which explains why the strain in the junction only induces isomerization in the SAc compound.

摘要

我们采用扫描隧道显微镜断键技术研究了一系列 5,15-二芳基卟啉的单分子电导,这些卟啉分子在苯环的邻位带有硫代乙酰基(SAc)或甲硫醚(SMe)的结合基团(S2 化合物)。这些邻位取代基导致每个化合物都有顺式和反式两种非对映异构体,在环境条件下,它们在溶液中不会相互转化;即使在高温下,异构化也需要几个小时(在 CClD 中 SAc 在 140°C 时半衰期为 15 小时)。所有的 S2 化合物都表现出两种电导基团,与单硫代(S1)化合物的比较表明,较高的电导基团来自于 Au-卟啉的直接相互作用。较低的电导基团与 S-S 途径有关。当结合基团为 SMe 时,结长度分布的差异反映了两种异构体之间 S-S 距离(0.3nm)的差异。在 SAc 的情况下,两种异构体的平台长度分布没有显著差异,并且都显示出远远超过其计算结长度的最大拉伸距离。接触变形解释了部分额外长度,但结果表明顺式异构体在结中发生顺式-反式转化。非对映异构化的势垒低于硫代醇 Au-S 和 Au-Au 键的强度,但高于 Au-SMe 键的强度,这解释了为什么在 SAc 化合物中,结中的应变仅诱导异构化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验