Suppr超能文献

深度学习对于正常与年龄相关性黄斑变性的光学相干断层扫描(OCT)图像分类很有效。

Deep learning is effective for the classification of OCT images of normal versus Age-related Macular Degeneration.

作者信息

Lee Cecilia S, Baughman Doug M, Lee Aaron Y

机构信息

Department of Ophthalmology, University of Washington School of Medicine, Seattle WA.

出版信息

Ophthalmol Retina. 2017 Jul-Aug;1(4):322-327. doi: 10.1016/j.oret.2016.12.009. Epub 2017 Feb 13.

Abstract

OBJECTIVE

The advent of Electronic Medical Records (EMR) with large electronic imaging databases along with advances in deep neural networks with machine learning has provided a unique opportunity to achieve milestones in automated image analysis. Optical coherence tomography (OCT) is the most commonly obtained imaging modality in ophthalmology and represents a dense and rich dataset when combined with labels derived from the EMR. We sought to determine if deep learning could be utilized to distinguish normal OCT images from images from patients with Age-related Macular Degeneration (AMD).

DESIGN

EMR and OCT database study.

SUBJECTS

Normal and AMD patients who had a macular OCT.

METHODS

Automated extraction of an OCT imaging database was performed and linked to clinical endpoints from the EMR. OCT macula scans were obtained by Heidelberg Spectralis, and each OCT scan was linked to EMR clinical endpoints extracted from EPIC. The central 11 images were selected from each OCT scan of two cohorts of patients: normal and AMD. Cross-validation was performed using a random subset of patients. Receiver operator curves (ROC) were constructed at an independent image level, macular OCT level, and patient level.

MAIN OUTCOME MEASURE

Area under the ROC.

RESULTS

Of a recent extraction of 2.6 million OCT images linked to clinical datapoints from the EMR, 52,690 normal macular OCT images and 48,312 AMD macular OCT images were selected. A deep neural network was trained to categorize images as either normal or AMD. At the image level, we achieved an area under the ROC of 92.78% with an accuracy of 87.63%. At the macula level, we achieved an area under the ROC of 93.83% with an accuracy of 88.98%. At a patient level, we achieved an area under the ROC of 97.45% with an accuracy of 93.45%. Peak sensitivity and specificity with optimal cutoffs were 92.64% and 93.69% respectively.

CONCLUSIONS

Deep learning techniques achieve high accuracy and is effective as a new image classification technique. These findings have important implications in utilizing OCT in automated screening and the development of computer aided diagnosis tools in the future.

摘要

目的

电子病历(EMR)与大型电子影像数据库的出现,以及深度学习与机器学习的进展,为在自动图像分析方面取得里程碑式成果提供了独特机遇。光学相干断层扫描(OCT)是眼科最常用的成像方式,当与从EMR中获取的标签相结合时,它代表了一个密集且丰富的数据集。我们试图确定深度学习是否可用于区分正常OCT图像与年龄相关性黄斑变性(AMD)患者的图像。

设计

EMR和OCT数据库研究。

研究对象

进行过黄斑OCT检查的正常人和AMD患者。

方法

对OCT影像数据库进行自动提取,并与EMR中的临床终点相关联。通过海德堡Spectralis获取OCT黄斑扫描图像,且每次OCT扫描都与从EPIC中提取的EMR临床终点相关联。从两组患者(正常人和AMD患者)的每次OCT扫描中选取中心部位的11张图像。使用患者的随机子集进行交叉验证。在独立图像层面、黄斑OCT层面和患者层面构建受试者工作特征曲线(ROC)。

主要观察指标

ROC曲线下面积。

结果

在最近提取的与EMR临床数据点相关联的260万张OCT图像中,选取了52690张正常黄斑OCT图像和48312张AMD黄斑OCT图像。训练了一个深度神经网络,将图像分类为正常或AMD。在图像层面,我们的ROC曲线下面积为92.78%,准确率为87.63%。在黄斑层面,我们的ROC曲线下面积为93.83%,准确率为88.98%。在患者层面,我们的ROC曲线下面积为97.45%,准确率为93.45%。最佳截断值时的峰值敏感度和特异度分别为92.64%和93.69%。

结论

深度学习技术具有较高的准确性,作为一种新的图像分类技术是有效的。这些发现对未来利用OCT进行自动筛查以及开发计算机辅助诊断工具具有重要意义。

相似文献

2
Fully automated detection of retinal disorders by image-based deep learning.基于图像的深度学习技术对视网膜疾病进行全自动检测。
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.

引用本文的文献

9
Tackling visual impairment: emerging avenues in ophthalmology.应对视力障碍:眼科学的新途径
Front Med (Lausanne). 2025 Apr 28;12:1567159. doi: 10.3389/fmed.2025.1567159. eCollection 2025.

本文引用的文献

6
Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning.基于深度学习的核性白内障分级自动特征学习
IEEE Trans Biomed Eng. 2015 Nov;62(11):2693-701. doi: 10.1109/TBME.2015.2444389. Epub 2015 Jun 11.
8
Ophthalmic imaging.眼科成像。
Br Med Bull. 2014 Sep;111(1):77-88. doi: 10.1093/bmb/ldu022. Epub 2014 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验