Suppr超能文献

用于医学图像分析的机器学习和深度学习方法:从诊断到检测

Machine learning and deep learning approach for medical image analysis: diagnosis to detection.

作者信息

Rana Meghavi, Bhushan Megha

机构信息

School of Computing, DIT University, Dehradun, India.

出版信息

Multimed Tools Appl. 2022 Dec 24:1-39. doi: 10.1007/s11042-022-14305-w.

Abstract

Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.

摘要

使用深度学习(DL)和机器学习(ML)的计算机辅助检测在医学领域显示出巨大的发展。医学图像被视为疾病诊断所需适当信息的实际来源。使用各种模态在疾病的初始阶段进行检测,是降低因癌症和肿瘤导致的死亡率的最重要因素之一。模态有助于放射科医生和医生研究检测到的疾病的内部结构,以获取所需特征。由于大量数据,ML在当前模态方面存在局限性,而DL可以有效地处理任何数量的数据。因此,DL被认为是ML的增强技术,其中ML使用学习技术,而DL获取有关机器在人周围应如何反应的详细信息。DL使用多层神经网络来获取有关所使用数据集的更多信息。本研究旨在对ML和DL在多种疾病检测及分类中的应用进行系统的文献综述。对2014年1月至2022年期间从知名期刊和会议上获取的40项初步研究进行了详细分析。它概述了基于ML和DL的多种疾病检测及分类的不同方法、医学成像模态、用于评估的工具和技术、数据集的描述。此外,使用MRI数据集进行实验,以对ML分类器和DL模型进行比较分析。本研究将通过使医学从业者和研究人员能够在更短的时间内以更高的准确性为给定疾病选择合适的诊断技术,来帮助医疗保健界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786e/9788870/88eaf605b0bd/11042_2022_14305_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验