Suppr超能文献

基于加权有序连接的功能网络分类方法在 EEG 信号分析中的应用:用于精神分裂症疾病检测。

Weighted ordinal connection based functional network classification for schizophrenia disease detection using EEG signal.

机构信息

Department of Computer Application, NIT, Raipur, 492010, CG, India.

Department of Computer Science and Engineering, MANIT, Bhopal, 462003, MP, India.

出版信息

Phys Eng Sci Med. 2023 Sep;46(3):1055-1070. doi: 10.1007/s13246-023-01273-0. Epub 2023 May 24.

Abstract

A brain connectivity network (BCN) is an advanced approach to examining brain functionality in various conditions. However, the predictability of the BCN is affected by the connectivity measure used for the network construction. Various connectivity measures available in the literature differ according to the domain of their working data. The application of random connectivity measures might result in an inefficient BCN that ultimately hampers its predictability. Therefore, selecting an appropriate functional connectivity metric is crucial in clinical as well as cognitive neuroscience. In parallel to this, an effective network identifier plays a vital role in distinguishing different brain states. Hence, the objective of this paper is two-fold, which includes identifying suitable connectivity measures and proposing an efficient network identifier. For this, the weighted BCN (WBCN) is constructed using multiple connectivity measures like correlation coefficient (r), coherence (COH), phase-locking value (PLV), and mutual information (MI) from electroencephalogram (EEG) signals. The most recent technique for feature extraction, i.e., weighted ordinal connections, has been applied to EEG-based BCN. EEG signals data has been taken from the schizophrenia disease database. Further, several classification algorithms such as k-nearest neighbours (KNN), support vector machine (SVM) with linear, radial basis function and polynomial kernels, random forest (RF), and 1D convolutional neural network (CNN1D) are used to classify the brain states based on extracted features. In classification, 90% accuracy is achieved by the CNN1D classifier with WBCN based on the coherence connectivity measure. The study also provides a structural analysis of the BCN.

摘要

脑连接网络(BCN)是一种研究各种条件下大脑功能的先进方法。然而,BCN 的可预测性受到用于构建网络的连接测量方法的影响。文献中提供的各种连接测量方法根据其工作数据的领域而有所不同。随机连接测量方法的应用可能导致效率低下的 BCN,最终阻碍其可预测性。因此,选择适当的功能连接度量在临床和认知神经科学中都至关重要。与此并行的是,有效的网络标识符在区分不同的大脑状态方面起着至关重要的作用。因此,本文的目的是双重的,包括确定合适的连接测量方法和提出有效的网络标识符。为此,使用来自脑电图(EEG)信号的多个连接测量方法(如相关系数(r)、相干性(COH)、锁相值(PLV)和互信息(MI))构建加权脑连接网络(WBCN)。最新的特征提取技术,即加权有序连接,已应用于基于 EEG 的 BCN。从精神分裂症疾病数据库中获取 EEG 信号数据。此外,还使用了几种分类算法,如 k-最近邻(KNN)、支持向量机(SVM)的线性、径向基函数和多项式核、随机森林(RF)和一维卷积神经网络(CNN1D),根据提取的特征对大脑状态进行分类。在分类中,基于相干连接测量的 CNN1D 分类器实现了 90%的准确率。该研究还提供了 BCN 的结构分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验