Suppr超能文献

一种用于药物在人肺中吸收、转运和滞留的房室准三维多尺度方法。

A compartment-quasi-3D multiscale approach for drug absorption, transport, and retention in the human lungs.

作者信息

Kannan Ravishekar Ravi, Singh Narender, Przekwas Andrzej

机构信息

CFD Research Corporation, 701 McMillian Way NW, Suite D, Huntsville, AL, 35806, USA.

出版信息

Int J Numer Method Biomed Eng. 2018 May;34(5):e2955. doi: 10.1002/cnm.2955. Epub 2018 Jan 25.

Abstract

Most current models used for modeling the pulmonary drug absorption, transport, and retention are 0D compartmental models where the airways are generally split into the airways and alveolar sections. Such block models deliver low fidelity solutions and the spatial lung drug concentrations cannot be obtained. Other approaches use high fidelity CFD models with limited capabilities due to their exorbitant computational cost. Recently, we presented a novel, fast-running and robust quasi-3D (Q3D) model for modeling the pulmonary airflow. This Q3D method preserved the 3D lung geometry, delivered extremely accurate solutions, and was 25 000 times faster in comparison to the CFD methods. In this paper, we present a Q3D-compartment multiscale combination to model the pulmonary drug absorption, transport, and retention. The initial deposition is obtained from CFD simulations. The lung absorption compartment model of Yu and Rosania is adapted to this multiscale format. The lung is modeled in the Q3D format till the eighth airway generation. The remainder of the lung along with the systemic circulation and elimination processes was modeled using compartments. The Q3D model is further adapted, by allowing for various heterogeneous annular lung layers. This allows us to model the drug transport across the layers and along the lung. Using this multiscale model, the spatiotemporal drug concentrations in the different lung layers and the temporal concentration in the plasma are obtained. The concentration profile in the plasma was found to be better aligned with the experimental findings in comparison with compartmental model for the standard test cases. Thus, this multiscale model can be used to optimize the target-specific drug delivery and increase the localized bioavailability, thereby facilitating applications from the bench to bedside for various patient/lung-disease variations.

摘要

当前大多数用于模拟肺部药物吸收、转运和滞留的模型都是零维房室模型,其中气道通常被划分为气道和肺泡部分。这种块状模型提供的是低精度解决方案,无法获得肺部药物的空间浓度。其他方法使用高保真计算流体动力学(CFD)模型,但由于其计算成本过高,功能有限。最近,我们提出了一种新颖、运行快速且稳健的准三维(Q3D)模型来模拟肺气流。这种Q3D方法保留了三维肺部几何结构,提供了极其精确的解决方案,并且与CFD方法相比快25000倍。在本文中,我们提出了一种Q3D-房室多尺度组合模型来模拟肺部药物的吸收、转运和滞留。初始沉积通过CFD模拟获得。Yu和Rosania的肺部吸收房室模型被改编为这种多尺度形式。肺部以Q3D形式建模至第八级气道。肺部的其余部分以及体循环和消除过程使用房室进行建模。通过考虑各种非均匀的环形肺层,对Q3D模型进行了进一步改进。这使我们能够模拟药物在各层之间以及沿肺部的转运。使用这种多尺度模型,可以获得不同肺层中的药物时空浓度以及血浆中的时间浓度。与标准测试案例的房室模型相比,发现血浆中的浓度分布与实验结果更吻合。因此,这种多尺度模型可用于优化靶向药物递送并提高局部生物利用度,从而促进针对各种患者/肺部疾病变化从实验室到床边的应用。

相似文献

1
A compartment-quasi-3D multiscale approach for drug absorption, transport, and retention in the human lungs.
Int J Numer Method Biomed Eng. 2018 May;34(5):e2955. doi: 10.1002/cnm.2955. Epub 2018 Jan 25.
2
A Quasi-3D compartmental multi-scale approach to detect and quantify diseased regional lung constriction using spirometry data.
Int J Numer Method Biomed Eng. 2018 May;34(5):e2973. doi: 10.1002/cnm.2973. Epub 2018 Mar 30.
3
A quasi-3D wire approach to model pulmonary airflow in human airways.
Int J Numer Method Biomed Eng. 2017 Jul;33(7). doi: 10.1002/cnm.2838. Epub 2016 Nov 4.
5
A multiscale absorption and transit model for oral drug delivery: Formulation and applications during fasting conditions.
Int J Numer Method Biomed Eng. 2020 Mar;36(3):e3317. doi: 10.1002/cnm.3317. Epub 2020 Feb 9.
8
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
J Comput Phys. 2013 Jul;244. doi: 10.1016/j.jcp.2012.10.021.
9
Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways.
Comput Methods Programs Biomed. 2020 Nov;196:105613. doi: 10.1016/j.cmpb.2020.105613. Epub 2020 Jun 20.
10
One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures.
Eur J Pharm Sci. 2018 Feb 15;113:53-63. doi: 10.1016/j.ejps.2017.09.033. Epub 2017 Sep 24.

引用本文的文献

1
Quasi-3D Mechanistic Model for Predicting Eye Drop Distribution in the Human Tear Film.
Bioengineering (Basel). 2025 Jul 30;12(8):825. doi: 10.3390/bioengineering12080825.
2
Subject-Specific Multi-Scale Modeling of the Fate of Inhaled Aerosols.
J Aerosol Sci. 2025 Jan;183. doi: 10.1016/j.jaerosci.2024.106471. Epub 2024 Sep 19.
6
Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
Adv Biol (Weinh). 2021 Jun;5(6):e2000024. doi: 10.1002/adbi.202000024. Epub 2021 Apr 15.
7
Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips.
Nat Biomed Eng. 2020 Apr;4(4):421-436. doi: 10.1038/s41551-019-0498-9. Epub 2020 Jan 27.
8
Role of TRPC1 channels in pressure-mediated activation of airway remodeling.
Respir Res. 2019 May 15;20(1):91. doi: 10.1186/s12931-019-1050-x.
9
In Silico Methods for Development of Generic Drug-Device Combination Orally Inhaled Drug Products.
CPT Pharmacometrics Syst Pharmacol. 2019 Jun;8(6):359-370. doi: 10.1002/psp4.12413. Epub 2019 May 21.

本文引用的文献

1
Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation.
Med Eng Phys. 2017 Apr;42:35-47. doi: 10.1016/j.medengphy.2016.11.007. Epub 2016 Dec 16.
2
A quasi-3D wire approach to model pulmonary airflow in human airways.
Int J Numer Method Biomed Eng. 2017 Jul;33(7). doi: 10.1002/cnm.2838. Epub 2016 Nov 4.
5
Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.
Pharm Res. 2015 Oct;32(10):3170-87. doi: 10.1007/s11095-015-1695-1. Epub 2015 May 6.
6
The role of coupled resistance-compliance in upper tracheobronchial airways under high frequency oscillatory ventilation.
Med Eng Phys. 2014 Dec;36(12):1593-604. doi: 10.1016/j.medengphy.2014.08.012. Epub 2014 Sep 22.
9
Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.
Ann Biomed Eng. 2010 Dec;38(12):3550-71. doi: 10.1007/s10439-010-0110-7. Epub 2010 Jul 8.
10
Simulation of pulmonary air flow with a subject-specific boundary condition.
J Biomech. 2010 Aug 10;43(11):2159-63. doi: 10.1016/j.jbiomech.2010.03.048. Epub 2010 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验