Suppr超能文献

公共兽医服务中的数据分布:健康与安全挑战推动了情境感知系统的发展。

Data distribution in public veterinary service: health and safety challenges push for context-aware systems.

作者信息

Contalbrigo Laura, Borgo Stefano, Pozza Giandomenico, Marangon Stefano

机构信息

Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020, Legnaro, (PD), Italy.

Laboratory for Applied Ontology, ISTC-CNR, Via alla Cascata, 56/C, 38123, Trento, Italy.

出版信息

BMC Vet Res. 2017 Dec 22;13(1):397. doi: 10.1186/s12917-017-1320-0.

Abstract

BACKGROUND

Today's globalised and interconnected world is characterized by intertwined and quickly evolving relationships between animals, humans and their environment and by an escalating number of accessible data for public health. The public veterinary services must exploit new modeling and decision strategies to face these changes. The organization and control of data flows have become crucial to effectively evaluate the evolution and safety concerns of a given situation in the territory. This paper discusses what is needed to develop modern strategies to optimize data distribution to the stakeholders.

MAIN TEXT

If traditionally the system manager and knowledge engineer have been concerned with the increase of speed of data flow and the improvement of data quality, nowadays they need to worry about data overflow as well. To avoid this risk an information system should be capable of selecting the data which need to be shown to the human operator. In this perspective, two aspects need to be distinguished: data classification vs data distribution. Data classification is the problem of organizing data depending on what they refer to and on the way they are obtained; data distribution is the problem of selecting which data is accessible to which stakeholder. Data classification can be established and implemented via ontological analysis and formal logic but we claim that a context-based selection of data should be integrated in the data distribution application. Data distribution should provide these new features: (a) the organization of situation types distinguishing at least ordinary vs extraordinary scenarios (contextualization of scenarios); (b) the possibility to focus on the data that are really important in a given scenario (data contextualization by scenarios); and (c) the classification of which data is relevant to which stakeholder (data contextualization by users).

SHORT CONCLUSION

Public veterinary services, to efficaciously and efficiently manage the information needed for today's health and safety challenges, should contextualize and filter the continuous and growing flow of data by setting suitable frameworks to classify data, users' roles and possible situations.

摘要

背景

当今全球化且相互关联的世界的特点是动物、人类及其环境之间的关系相互交织且迅速演变,以及可用于公共卫生的数据数量不断增加。公共兽医服务必须采用新的建模和决策策略来应对这些变化。数据流的组织和控制对于有效评估某一地区特定情况的演变和安全问题至关重要。本文讨论了制定现代策略以优化向利益相关者的数据分发所需的条件。

正文

如果传统上系统管理员和知识工程师一直关注数据流速度的提高和数据质量的改善,那么如今他们还需要担心数据溢出问题。为避免这种风险,信息系统应能够选择需要向人工操作员展示的数据。从这个角度来看,需要区分两个方面:数据分类与数据分发。数据分类是根据数据所涉及的内容及其获取方式来组织数据的问题;数据分发是选择哪些利益相关者可以访问哪些数据的问题。数据分类可以通过本体分析和形式逻辑来建立和实施,但我们认为基于上下文的数据选择应集成到数据分发应用程序中。数据分发应具备以下新功能:(a) 区分至少普通场景与特殊场景的情况类型组织(场景的上下文化);(b) 在给定场景中关注真正重要数据的可能性(按场景进行数据上下文化);以及 (c) 确定哪些数据与哪些利益相关者相关的分类(按用户进行数据上下文化)。

简短结论

公共兽医服务要有效且高效地管理当今健康和安全挑战所需的信息,应通过设置合适的框架对数据、用户角色和可能情况进行分类,从而对持续增长的数据流进行上下文化和筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8122/5741927/e756915ed180/12917_2017_1320_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验