Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois; Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
Biophys J. 2018 Jan 23;114(2):283-288. doi: 10.1016/j.bpj.2017.11.018. Epub 2017 Dec 19.
Millisecond pulses of laser light delivered to gold nanoparticles residing in close proximity to the surface membrane of neurons can induce membrane depolarization and initiate an action potential. An optocapacitance mechanism proposed as the basis of this effect posits that the membrane-interfaced particle photothermally induces a cell-depolarizing capacitive current, and predicts that delivering a given laser pulse energy within a shorter period should increase the pulse's action-potential-generating effectiveness by increasing the magnitude of this capacitive current. Experiments on dorsal root ganglion cells show that, for each of a group of interfaced gold nanoparticles and microscale carbon particles, reducing pulse duration from milliseconds to microseconds markedly decreases the minimal pulse energy required for AP generation, providing strong support for the optocapacitance mechanism hypothesis.
激光微脉冲传递到神经元表面膜附近的金纳米粒子可以引起膜去极化并引发动作电位。提出的光电导机制作为这种效应的基础,假设界面颗粒光热诱导细胞去极化电容电流,并预测在更短的时间内传递给定的激光脉冲能量应该通过增加该电容电流的幅度来增加脉冲产生动作电位的有效性。背根神经节细胞的实验表明,对于一组界面金纳米粒子和微尺度碳粒子中的每一个,将脉冲持续时间从毫秒缩短到微秒显著降低了产生 AP 所需的最小脉冲能量,为光电导机制假说提供了有力支持。