Wang Yingqiao, Garg Raghav, Cohen-Karni Devora, Cohen-Karni Tzahi
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
These authors contributed equally: Yingqiao Wang, Raghav Garg.
Nat Rev Bioeng. 2023 Mar;1(3):193-207. doi: 10.1038/s44222-023-00022-y. Epub 2023 Jan 31.
Modulating neural electrophysiology with high precision is essential for understanding neural communication and for the diagnosis and treatment of neural disorders. Photothermal modulation offers a remote and non-genetic method for neural modulation with high spatiotemporal resolution and specificity. This technique induces highly localized and transient temperature changes at the cell membrane interfaced with photothermally active nanomaterials. This rapid temperature change affects the electrical properties of the cell membrane or temperature-sensitive ion channels. In this Review, we discuss the fundamental material properties and illumination conditions that are necessary for nanomaterial-assisted photothermal neural excitation and inhibition. We examine how this versatile technique allows direct investigation of neural electrophysiology and signalling pathways in two-dimensional and three-dimensional cell cultures and tissues, and highlight the scientific and technological challenges in terms of cellular specificity, light delivery and biointerface stability on the road to clinical translation.
高精度调节神经电生理对于理解神经通信以及神经疾病的诊断和治疗至关重要。光热调制提供了一种具有高时空分辨率和特异性的远程非遗传神经调制方法。该技术在与光热活性纳米材料界面接触的细胞膜上诱导高度局部化和瞬时的温度变化。这种快速的温度变化会影响细胞膜或温度敏感离子通道的电学性质。在本综述中,我们讨论了纳米材料辅助光热神经激发和抑制所需的基本材料特性和光照条件。我们研究了这种通用技术如何在二维和三维细胞培养物及组织中直接研究神经电生理和信号通路,并强调了在临床转化道路上细胞特异性、光传递和生物界面稳定性方面的科学技术挑战。