Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Structure. 2018 Jan 2;26(1):118-129.e3. doi: 10.1016/j.str.2017.11.018. Epub 2017 Dec 21.
Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins.
理性设计蛋白质的热稳定性可以创造出在苛刻的工业应用下发挥作用的酶和受体。有几种基于序列的方法可以产生嗜温蛋白的热稳定变体。为了深入了解蛋白质变得更稳定的机制,我们使用结构和动力学分析来比较两种常用的方法,即祖先序列重建(ASR)和共识方法,用于生成热稳定变体的延伸因子热不稳定(EF-Tu)。我们展示了祖先和共识 EF-Tu 的晶体结构,以及旨在探测增强热稳定性所采用策略的分子动力学模拟。所有蛋白质都采用类似于现存 EF-Tu 的晶体结构,表明这两种方法之间在平均结构上没有差异。分子动力学表明,ASR 产生的序列保留了与现存的嗜热菌来源的热稳定 EF-Tu 相似的动力学特性,而共识 EF-Tu 的动力学则与基于进化的序列不同。这项工作突出了 ASR 在工程热稳定性方面的优势,同时保留了多结构域蛋白质中的自然运动。