Marin Brandon C, Ramirez Julian, Root Samuel E, Aklile Eden, Lipomi Darren J
Department of NanoEngineering, University of California, San Diego 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448.
Nanoscale Horiz. 2017;2(6):311-318. doi: 10.1039/C7NH00095B. Epub 2017 Aug 14.
Graphene decorated with metallic nanoparticles exhibits electronic, optical, and mechanical properties that neither the graphene nor the metal possess alone. These composite films have electrical conductivity and optical properties that can be modulated by a range of physical, chemical, and biological signals. Such properties are controlled by the morphology of the nanoisland films, which can be deposited on graphene using a variety of techniques, including in situ chemical synthesis and physical vapor deposition. These techniques produce non-random (though loosely defined) morphologies, but can be combined with lithography to generate deterministic patterns. Applications of these composite films include chemical sensing and catalysis, energy storage and transport (including photoconductivity), mechanical sensing (using a highly sensitive piezroresistive effect), optical sensing (including so-called "piezoplasmonic" effects), and cellular biophysics (i.e sensing the contractions of cardiomyocytes and myoblasts).
用金属纳米颗粒修饰的石墨烯展现出了电子、光学和机械性能,这些性能无论是单独的石墨烯还是金属都不具备。这些复合薄膜具有电导率和光学性能,可通过一系列物理、化学和生物信号进行调制。这些性能由纳米岛薄膜的形态控制,纳米岛薄膜可以使用多种技术沉积在石墨烯上,包括原位化学合成和物理气相沉积。这些技术产生非随机(尽管定义宽松)的形态,但可以与光刻技术结合以生成确定性图案。这些复合薄膜的应用包括化学传感与催化、能量存储与传输(包括光电导性)、机械传感(利用高灵敏度压阻效应)、光学传感(包括所谓的“压电势”效应)以及细胞生物物理学(即感知心肌细胞和成肌细胞的收缩)。