Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, San Luis Potosí, SLP 78290, Mexico.
Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Mar;1863(3):299-312. doi: 10.1016/j.bbalip.2017.12.009. Epub 2017 Dec 22.
The TMEM16A-mediated Ca-activated Cl current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca. On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction.
TMEM16A 介导的 Ca 激活 Cl 电流驱动多种重要的生理功能。膜脂调节离子通道和转运体,但它们对 TMEM16 家族成员的影响知之甚少。本研究使用膜片钳、生物化学和荧光显微镜研究了磷脂酰肌醇 4,5-二磷酸(PI(4,5)P2)、胆固醇和脂肪酸对 TMEM16A 的调节作用。结果发现,膜 PI(4,5)P2 的耗竭导致 TMEM16A 电流下降,这种下降与细胞骨架无关,但通过去除细胞内 Ca 可部分阻止。另一方面,向胞内陷片内提供 PI(4,5)P2 可减弱通道失活后电流衰减,或部分恢复通道失活后的活性。此外,膜胆固醇的耗竭(用甲基-β-环糊精 M-βCD)或恢复(用 M-βCD+胆固醇)会减缓 PI(4,5)P2 减少后观察到的电流衰减。胆固醇的耗竭或恢复均不改变 PI(4,5)P2 的含量。然而,M-βCD 本身可短暂增加 TMEM16A 的活性并减弱失活,而 M-βCD+胆固醇则增加通道失活。因此,PI(4,5)P2 是 TMEM16A 功能所必需的,而胆固醇则通过直接和间接(通过与 PI(4,5)P2 无关的机制)调节通道功能。硬脂酸、花生四烯酸、油酸、二十二碳六烯酸和二十碳五烯酸以及甲酯硬脂酸以剂量和电压依赖的方式抑制 TMEM16A。磷脂酰丝氨酸,一种其烃尾含有硬脂酸和油酸的磷脂,也抑制 TMEM16A。最后,我们发现 TMEM16A 在 M-βCD、M-βCD+胆固醇、油酸或二十二碳六烯酸处理后仍保留在质膜中。因此,我们提出脂质和脂肪酸通过膜限域的蛋白-脂质相互作用调节 TMEM16A 通道。